Annotation
The paper provides a comparative analysis of three options for constructing the Schrödinger equation in phase space: the Torres-Vega method, from the Vlasov equation and the Moel equation. Each approach gives its own version of the Schrödinger equation in phase space. Exact solutions corresponding to a quantum harmonic oscillator are considered for each equation.
Received: 2020 October 1
Approved: 2020 November 17
PACS:
05.20.Dd Kinetic theory
03.65.Wj State reconstruction, quantum tomography
05.30.-d Quantum statistical mechanics
03.65.Wj State reconstruction, quantum tomography
05.30.-d Quantum statistical mechanics
© 2016 Publisher M.V.Lomonosov Moscow State University
Authors
E. E. Perepelkin$^{1,2}$, B. I. Sadovnikov$^1$, N. G. Inozemtseva$^{2,3}$, E. V. Burlakov$^{1,2}$
$^1$2- Центр квантовых технологий МГУ имени М.В.Ломоносова,\
$^2$Moscow Technical University of Communications and Informatics\
$^3$State university "Dubna"
$^1$2- Центр квантовых технологий МГУ имени М.В.Ломоносова,\
$^2$Moscow Technical University of Communications and Informatics\
$^3$State university "Dubna"