Currently, a significant effect of the expansion of the front region of intense nonlinear acoustic waves created in the atmosphere by pulsed point sources of various nature has not been fully explained – the recorded width of the front region is several orders of magnitude larger than it follows from theoretical concepts. To explain such a significant effect, a hypothesis has been put forward about the possibility of developing Kelvin-Helmholtz instability inside the front region of the wave with a shear flow caused by a mass velocity gradient in the front region itself. The paper substantiates the proposed hypothesis. For this purpose, direct (without using any semi-empirical models) numerical simulation of the Kelvin-Helmholtz instability inside a physically infinitesimal volume of air in the front region of an intense nonlinear acoustic wave is performed. The homogeneous plane motion of compressed air in a wave is considered. It is shown for the first time that the development of Kelvin-Helmholtz instability at different distances from the source should have geometric similarity due to the fact that the process develops in an ideal environment. It does not matter whether the width of the front area increases as the wave moves away from the source or it increases due to an increase in its energy.
47.11.-j Computational methods in fluid dynamics
47.20.Ft Instability of shear flows
47.27.E- Turbulence simulation and modeling
$^1$\
$^2$Lomonosov Moscow State University, Faculty of Physics, Department of Atmospheric Physics