
УЧЕНЫЕ ЗАПИСКИ ФИЗИЧЕСКОГО ФАКУЛЬТЕТА МОСКОВСКОГО УНИВЕРСИТЕТА № 6, 2560701 (2025)

Разработка нейронной сети для отслеживания негативных изменений
в сердечно-сосудистой системе человека на основе сигналов пульсовых волн

С. Мсукар,1∗ Р.В. Давыдов1†
1Санкт-Петербургский Политехнический университет Петра Великого,

институт компьютерных наук и кибербезопасности,
высшая школа управления кибер-физическими системами

Россия, 195251, Санкт-Петербург, ул. Политехническая, д. 29
(Поступила в редакцию 10.06.2025; подписана в печать 01.11.2025)

Сердечно-сосудистые заболевания являются одной из основных причин смертности во всём мире,
что делает критически важным раннее выявление патологических изменений для своевременного
принятия мер. В данной работе представлена разработанная нейросетевая модель, предназначенная
для обнаружения и отслеживания негативных изменений в сердечно-сосудистой системе челове-
ка путём анализа сигналов пульсовой волны. В исследовании используется медицинский датасет,
содержащий 657 записей данных от 219 пациентов. Датасет охватывает возрастной диапазон 20–
89 лет и включает записи о наличии и стадии заболевания. Данные были отфильтрованы и обра-
ботаны для извлечения признаков. После обучения модель продемонстрировала точность 93% на
тестовых данных, что подтверждает её потенциал для интеграции в носимые устройства и системы
дистанционного мониторинга здоровья.

PACS: 87.10.+e УДК: 612.16
Ключевые слова: сердечно-сосудистые заболевания, обработка пульсовой волны, фотоплетизмограмма, нейро-
сетевой многоклассификатор.

ВВЕДЕНИЕ

Состояние сердечно-сосудистой системы является
ключевым индикатором общего состояния организма.
Раннее выявление негативных изменений, таких как
повышенная артериальная ригидность или нарушения
сердечного ритма, может существенно снизить уровень
заболеваемости и смертности. При этом предпочтение
здесь часто отдается методам мониторинга на основе
неинвазивных измерений [1]. Одним из популярных из
них является анализ сигнала пульсовой волны, реги-
стрируемого пульсоксиметрами, который содержит ин-
формацию о динамике сердечно-сосудистой системы.
Кроме того, такие измерения могут выполняться паци-
ентами самостоятельно и неограниченное количество
раз [2].

Анализ пульсовой волны позволяет выявлять забо-
левания и отслеживать негативные изменения в состо-
янии здоровья [3]. Существует множество методов ана-
лиза и обработки пульсовых волн, среди которых наи-
более популярны: анализ сингулярных значений [4],
разложение в ряд Фурье [5], метод независимых ком-
понент, вейвлет-преобразование и адаптивная филь-
трация шумов. Каждый из этих методов имеет пре-
имущества и недостатки. Некоторые подходы обладают
высокой вычислительной сложностью для использова-
ния в реальном времени. В работе [6] метод независи-
мых компонент основан на предположении о статисти-
ческой независимости артефактов движения и артери-
альной пульсации, которое было опровергнуто в [7].
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Адаптивная фильтрация эффективно устраняет шумы
без искажения сигнала, однако выбор порядка фильтра
и коэффициента сходимости остаётся сложной задачей
[8]. При реализации метода адаптивного шумоподав-
ления требуется дополнительное оборудование, напри-
мер, акселерометр. В [9] предложен подход на осно-
ве вейвлет-преобразования для устранения артефактов
движения. Недостатком этого метода является субъ-
ективный выбор порогового значения, поскольку ре-
конструированный сигнал зависит от индивидуальных
особенностей пациента. Неверный выбор порога может
привести к некорректным результатам.

В последние годы проведён ряд исследований по
классификации пациентов с cердечно-сосудистыми за-
болеваниями (ССЗ) с использованием глубокого обу-
чения и сигналов пульсовой волны. В работе [10]
нейросетевой классификатор превзошёл другие мето-
ды (опорных векторов и k-ближайших соседей), до-
стигнув точности около 90%. Данные об артериаль-
ном давлении и фотоплетизмограммы (ФПГ) 73 па-
циентов с ишемической болезнью сердца и 64 здо-
ровых лиц были взяты из базы данных MIMIC-II.
Данные предварительно обрабатывались полосовыми
фильтрами с диапазонами 2.5–16 Гц для ABP и 1.5–
16 Гц для PPG. Из каждого сигнала извлечено 19
признаков, включая среднюю длительность импуль-
са, среднюю крутизну восходящего фронта и соот-
ношение низкочастотных и высокочастотных компо-
нентов. В [11] предложена 1D-CNN модель для об-
наружения аритмий по сигналам PPG. Использован
датасет медицинского центра университета Массачу-
сетса, содержащий синхронные записи электрокардио-
грамм (ЭКГ) и ФПГ. Сигналы ЭКГ фильтровались
полосовым фильтром, а ФПГ-сигналы сегментирова-
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лись на 30-секундные эпизоды. Точность модели оце-
нивалась путём сопоставления классификации PPG
с эталонными данными ЭКГ. Модель достигла точно-
сти 95.17% в дифференциации нормального синусового
ритма, фибрилляции предсердий и преждевременных
сокращений предсердий. В [12] сверточная нейронная
сеть с глубокой остаточной сетью (ResNetCNN) и дву-
направленная долговременная память (LSTM) исполь-
зуются для определения оптимальных рабочих пара-
метров для датасета PPG-BP. В ходе эксперимента со-
отношение обучающих и тестовых датасетах составля-
ло 8:2. Модель продемонстрировала оптимальную точ-
ность классификации в 76% при использовании тесто-
вого датасета, что не очень хорошо.

Таким образом, есть потребность в разработке ново-
го метода обработки пульсовой волны, интегрирован-
ного с нейросетевой моделью, использующей призна-
ки, извлечённые из обработанного сигнала, для оценки
эффективности выявления заболеваний на начальных
стадиях, в частности гипертонии. Целью работы явля-
ется разработка нейросетевой модели для прогнозиро-
вания сердечно-сосудистых заболеваний (многоклассо-
вая классификация).

1. МЕТОДОЛОГИЯ

1.1. Датасет

Датасет, использованный в данной работе, получен
из открытой базы PPG-BP (фотоплетизмограмма и ар-
териальное давление), предназначенной для неинва-
зивной диагностики сердечно-сосудистых заболеваний.
Он содержит 657 записей данных от 219 пациентов,
охватывающих возрастной диапазон 20–89 лет, а так-
же информацию о заболеваниях, включая гипертонию.

Сбор данных осуществлялся в соответствии со стан-
дартными экспериментальными условиями и протоко-
лами [13]. Протокол измерений и статистика датасе-
та представлены на рис.1 и 2. Фотоплетизмограмма
(PPG) и артериальное давление (BP) регистрировались
в течение 3 мин. Для каждого участника было запи-
сано три сегмента PPG длительностью 2.1 с каждый.

Рис. 1. Протокол измерения ФПГ сигналов [13]

Сигнал пульсовой волны обрабатывался полосовым
фильтром Баттерворта второго порядка (0.5–5 Гц) с ча-

стотой дискретизации 1 кГц для подавления шумов,
артефактов движения и базального дрейфа. Пример
сигнала и результатов его обработки представлен на
рис. 3.

1.2. Метод обработки пульсовой волны

Метод предполагает разделение сигнала пульсовой
волны на три ключевые области: фронты нарастания,
фонты спада и окрестность максимума. Для обработки
каждой области предложено использование специали-
зированных математических функций. На рис. 4 пред-
ставлены обозначения зон пульсовой волны, использу-
емые в математическом описании [14].

Сигнал рассматривается как ступенчатая функция
с не менее чем одним, но не более чем тремя локальны-
ми максимумами (пиками). Для описания окрестности
максимума сигнала используется функция F:

F (t) = F





m+p
∑

i=m−p

∆τi



 = |
An −An−1

∆τn
|, (1)

где ∆τi — длительность шага, m — номер шага, со-
ответствующего локальному максимуму, p — целочис-
ленный коэффициент (по умолчанию равен 2).

Для обработки фронтов нарастания пульсовой волны
используется функция Φi(t):

Φi(t) =

mi
∑

n=ki



An(t)

mi−ki+1
∑

j=1

[

∆τj+ki−1.p

∆Tmi
(mi − 1)

]j



 , (2)

где mi — порядковый номер шага, соответствующе-
го локальному максимуму, ∆τn — длительность шага,
An — амплитуда сигнала на шаге n, ∆Tmi

— длитель-
ность всех фронтах нарастания сигнала.

Фронт спада амплитуды сигнала связан с релаксаци-
онными процессами в организме и имеет экспоненци-
альный характер. Для её обработки разработана функ-
ция Ψ:

Ψ(t) = Am

[

e
−t.p.(n−m)

∆τk

n−m

p(Ak−1 −Ak)

]

. (3)

Метод был протестирован на используемом датасе-
те. Примеры обработки сигналов для трёх пациентов
из используемого датасета («а», «б», «в») с разным ко-
личеством пиков у сигнала (1, 2 и 3 соответственно)
представлены на рис. 5–7.

1.3. Предобработка данных

1. Извлечение признаков

После обработки сигналов пульсовой волны извле-
чена группа признаков. Поскольку сигнал разделён на
три области (как указано выше), признаки для каждо-
го пациента включают:
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Рис. 2. Статистика по датасету PPG-BP. а — гистограмма возрастных групп; б — круговая диаграмма состояний здоровья
человека [13]

Рис. 3. Исходный и отфильтрованный нормализованный сигнал пульсовой волны

• Среднее значение суммы амплитуд в каждой об-
ласти (F,Φ1,Φ2,Φ3) — 6 признаков.

• Среднее значение суммы амплитудных площадей
в каждой области (F,Φ1,Φ2,Φ3) — 3 признака.

• Значение Ψ на каждом пике — 3 признака.

• Разница между значениями Ψ на двух пиках
в каждой области спада — 2 признака.

• Разница между значениями Ψ в начале и конце
каждой области спада — 3 признака.

Демографические и клинические данные из датасе-
та (пол, возраст, высота, вес, систолическое артери-
альное давление (англ. systolic blood pressure, SBP),

диастолическое артериальное давление (англ. diastolic
blood pressure, DBP), частота сердечных сокращений
(англ. heart rate, HR), индекс массы тела (англ. body
mass index, BMI)) — 8 признаков. Сформированная ба-
за данных, включающая эти признаки, используется
для обучения и тестирования нейросетевой модели.

Новый метод обработки учитывает в сигнале пульсо-
вой волны разное количество максимумов. В датасете
большинство записей содержат сигналы с одним пи-
ком — 557 из 657 записей, соответствующих пациен-
там с различным состоянием: здоров, предгипертония,
гипертония 1-й и 2-й стадий, как показано на рис. 8.

Признаки, которые были взяты для однопиковых
сигналов:
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Рис. 4. Основные обозначения на областях пульсовой волны

Рис. 5. Результаты обработки окрестностей максимума за
один период с использованием функции F у трех пациентов

• Среднее значение суммы амплитуд
в областях(F,Φ1) — 2 признака.

• Среднее значение амплитудной площади в обла-
сти (Φ1) — 1 признак.

• Значение Ψ на пике — 1 признак.

• Разница между значениями Ψ в начале и конце
области спада — 1 признак.

• Демографические и клинические данные (пол,
возраст, высота, вес, SBP, DBP, HR, BMI) —
8 признаков.

Для получения хорошего прогноза используемые
данные должны быть сбалансированными и не содер-
жать экстремальных значений, которые отрицательно
влияют на результаты. Поэтому были реализованы эта-
пы предварительной обработки:

Рис. 6. Результаты обработки фронтов нарастания за один
период с использованием функций Φ1,Φ2,Φ3 у трех пациен-
тов

Рис. 7. Результаты обработки фронтов спада за один период
с использованием функции Ψ у трёх пациентов

1. Обработка пропущенных значений и кодирование
категориальных переменных (например, пол —
бинарное кодирование: «Мужчина»/«Женщина»
→ 0/1).

2. Нормализация признаков. Использован
StandardScaler из библиотеки sklearn для
стандартизации данных (центрирование по
среднему и масштабирование до единичной
дисперсии).

3. Балансировка данных. На рис. 8 виден дисбаланс
классов. Для его устранения применён метод
передискретизации SMOTE (Synthetic Minority
Over-sampling Technique), генерирующий синте-
тические примеры для миноритарных классов.
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Рис. 8. Информация о датасете сигналов однопиковой пуль-
совой волны

2. Архитектура нейронной сети

Была создана модель нейронной сети для класси-
фикации четырех стадий гипертонии на основе опи-
санного выше датасета. Архитектура нейронной сети
состоит из трёх слоев (рис. 9), где входной слой пред-
ставляет независимые переменные (признаки), выход
каждого нейрона (каждый вход) передается всем сле-
дующим нейронам в выходном скрытом слое которые
умножаются на некоторый вес, и их произведение бу-
дет использоваться для классификации зависимой пе-
ременной на четыре класса: либо здоров, либо пред-
гипертония, либо гипертония 1 стадии, либо гиперто-
ния 2 стадии с использованием функции активации
Softmax. Скрытый слой имеет 4 блока с RELU в ка-
честве функции активации. Слой отсева с показателем
отсева, равным 0.2, используется для предотвращения
переобучения [15]. Модель была обучена с использова-
нием адаптивного алгоритма оптимизации Adam с на-
стройкой скорости обучения [16] с 100 эпохами. На
основе результатов обучения и тестирования рассчи-
таны: точность, F1-мера и матрица ошибок (confusion
matrix). Эти метрики сравнивались между обучающей
и тестовой выборками для проверки обобщающей спо-
собности модели.

2. РЕЗУЛЬТАТЫ

При оценке эффективности модели классификации
ключевыми метриками являются точность (precision)
и полнота (recall).

Рис. 9. Предлагаемая архитектура нейронной сети

Рис. 10. Матрица ошибок модели нейронной сети

• Точность рассчитывается как отношение верно
классифицированных положительных случаев к
общему числу случаев, отнесённых моделью к
положительному классу [17].

Precision =
TP

TP + FP
. (4)

• Полнота отражает долю фактически положи-
тельных случаев, корректно идентифицирован-
ных моделью [18].

Recall =
TP

TP + FN
. (5)

• F1 — мера (F1-score) — важный показатель,
представляющий собой взвешенное гармониче-
ское среднее точности и полноты. Эта метрика
оценивает общую производительность модели на
датасете [19] и показывает частоту корректных
прогнозов в рамках всех предсказаний [20].

F1-score =
2 ∗ (Presicison ∗Recall)

Presicison+Recall
. (6)
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Таблица. Классификационный отчёт

Precision Recall F1-score Support

«здоров» 0.95 1.00 0.97 37

«предгипертония» 0.98 0.96 0.97 46

«гипертония 1 стадии» 0.92 0.71 0.80 17

«гипертония 2 стадии» 0.73 0.92 0.81 12

Accuracy 0.93 112

Macro avg 0.90 0.89 0.89 112

Weighted avg 0.93 0.93 0.93 112

Рис. 11. Обучение и проверка точности и потерь Рис. 12. ROC-кривые

• Поддержка (support) — количество образцов
каждого класса в исходных данных. Значения
метрик для классов суммируются с учётом ве-
сов, пропорциональных их частоте, после чего
вычисляется взвешенное среднее [20].

WeightedAverage =

∑

(Metrics ∗ support)
∑

Support
. (7)

• Точность (accuracy) — доля верных прогнозов
модели относительно общего числа предсказа-
ний [18]. Однако эта метрика релевантна толь-
ко при сбалансированном распределении классов
в данных (когда количество образцов в каждом
классе примерно одинаково) [21, 22].

Accuracy =
TP + TN

TP + FN + FP + TN
, (8)

где TP — истинно положительные случаи, TN —
истинно отрицательные случаи, FP — ложно по-
ложительные случаи, FN — ложно отрицатель-
ные случаи.

Значения метрик классификации представлены
в таблице.

Рис. 10 отображает матрицу ошибок модели
(confusion matrix), позволяя определить значения TP,
TN, FP и FN для каждого класса.

Модель точно прогнозирует здоровых пациентов
(класс «здоров») и случаи предгипертонии, однако
в 5% случаев ошибочно классифицирует предгипер-
тонию как здоровье. Модель демонстрирует хорошую
способность различать гипертонию 1-й стадии от еще
предгипертонии. Отличать стадии гипертонии между
собой удается хуже, но при выявлении любого из этих
состояний рекомендуется консультация врача. Общая
точность модели составила 93% (рис. 11).

На рис. 12 показаны ROC-кривые. Модель пока-
зывает исключительную эффективность для классов
«здоров», «предгипертония» и «гипертония 2-й стадии»
(AUC≈1.00), где AUC является площадь под ROC-
кривой, метрика качества классификации. Их ROC-
кривые примыкают к верхнему левому углу, что указы-
вает на высокую долю истинно положительных и низ-
кую долю ложноположительных прогнозов. Для «ги-
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пертонии 1-й стадии» достигнут AUC = 0.92. Кривая
ближе к диагонали, что отражает сложности в диффе-
ренциации этого класса от остальных. Линия случай-
ного классификатора (AUC = 0.5) служит референсом.
Любая кривая выше неё указывает на эффективность
выше случайной.

ЗАКЛЮЧЕНИЕ

Создана нейросетевая модель, которая позволяет на
основе сигнала пульсовой волны предсказывать нали-

чие заболеваний сердечно-сосудистой системы. Резуль-
таты этого исследования показывают, что предложен-
ный подход является перспективным методом класси-
фикации сигналов ФПГ и диагностики гипертонии на
ранних стадиях.

Полученную точность модели планируется далее
улучшить, расширив датасет путем добавления боль-
шего количества объектов. Далее планируется дообу-
чить модель на сигналах, содержащих два и три пика
пульсовых волн.

[1] Netala V.R., Teertam S.K., Li H., Zhang Z.. // Cells. 13,
N 17. 1471 (2024).

[2] Davydov R., Zaitceva A., Davydov V. et al. // J. Pers.
Med. 13. 443 (2023).

[3] Nascimento L.M.S.d., Bonfati L. V., Freitas M.L.B. et al.
// Sensors. 20. N 15. 4063 (2020).

[4] Ashoka K., Boby G., Kumar V. // IEEE trans. On
instrumentation and measurement. 58. N 5. 1706 (2009).
L

[5] Naraharisetti K.V. , M. Bawa. // IEEE International
Conference On Electro/Information Technology. 1 (2011).

[6] Kim B.S., Yoo S.K. // IEEE Transactions on Biomedical
Engineering. 53. N 3. 566 (2006).

[7] Yao J., Warren S. // Proceedings of Annual International
Conference of the IEEE Engineering in Medicine and
Biology Society. 3585 (2005).

[8] Relente A.R., Sison L.G. // Proceedings of the Second
Joint 24th Annual Conference and the Annual Fall
Meeting of the Biomedical Engineering Society]. 1769
(2002).

[9] Lee C.M., Zhang Y.T. // IEEE EMBS Asian-Pacific
Conference on Biomedical Engineering. 194 (2023).

[10] Minhas, A., Pal, S.C., Jain, K. // Scientific reports. 15.
N 1. 8574 (2025).

[11] Bulut M. G., Unal S., Hammad M., Plawiak // PloS one.
20. N 2 (2025).

[12] Yen C.T., Chang S.N., Liao C.H. // Measurement and
Control. 54. N 3–4. 439 (2021).

[13] Liang Y., Chen Z., Liu G., Elgendi M. // Scientific data.
5. 4180020 (2018).

[14] Давыдов Р.В., Якушева М.А., Порфирьева Е.В. и др. //
ЖТФ. 94. № 9. 1466 (2024).

[15] Srivastava N., Hinton G., Krizhevsky A. et al. // JMLR.
15, 56. N 3–4. 1929 (2014).

[16] Kingma D., Ba J. // CoRR. abs/1412.6980. (2014).
[17] Ali K, Shaikh Z.A., Khan A.A., Laghari A.A. //

Neuroscience Informatics. 2, 4. 100034 (2021).
[18] Weng S., Hu D., Chen J. et al. // Diagnostics. 13, 6. 1168

(2023).
[19] Ragab M., Alshehri S., Alhakamy N.A. et al. //

Computational Intelligence and Neuroscience. 6185013
(2022).

[20] Mathew J., Kshirsagar R., Abidin D.Z. et al. // Scientific
reports. 13, 1. 9948 (2023).

[21] Grandini M., Bagli E., Visani G. // arXiv:2008.05756.
2020.

[22] Moulaeifard M., Coquelin L., Rinkevic̆ius M. et al. //
arXiv:2502.19949. 2025.

Deep-learning detection of human cardiovascular system deterioration from pulse-wave
signals
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St. Petersburg 195251, Russia
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Cardiovascular diseases (CVD) are among the leading causes of mortality worldwide, making the early detection of
pathological changes critically important for timely intervention. This study presents a developed neural network model
designed to detect and monitor adverse changes in the human cardiovascular system through the analysis of pulse
wave signals. The research utilizes a medical dataset comprising 657 data recordings from 219 patients. The dataset
covers an age range of 20–89 years and includes records on disease presence and stage. The data were filtered and
processed for feature extraction. After training, the model demonstrated an accuracy of 93% on test data, confirming
its potential for integration into wearable devices and remote health monitoring systems.
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