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В настоящей работе при помощи метода ортогональных амплитуд вычислены парциальные ши-
рины и дифференциальные распределения для распадов B− → µ+µ−e−ν̄e и B− → e+e−µ−ν̄µ.
В процессе вычислений учтены излучение виртуального фотона лёгким кварком (VMD прибли-
жение), излучение виртуального фотона тяжёлым кварком и тормозное излучение. Полученные
результаты находятся в удовлетворительном согласии с экспериментальными ограничениями.
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ВВЕДЕНИЕ

Четырёхлептонные распады псевдоскалярных заря-
женных B± мезонов начали изучать сравнительно
недавно. Первое теоретическое предсказание шири-
ны распадов B− → ℓ+ℓ−ℓ′−ν̄ℓ′ было опубликовано
в 2018 г. в работе [1]. В 2019 г. в работе [2] появилось
первое экспериментальное ограничение на ширину рас-
пада B− → µ+µ−µ−ν̄µ:

Br(B− → µ+µ−µ−ν̄µ) < 0.16× 10−7, (1)

что почти на порядок ниже предсказания [1]. Дан-
ный факт стимулировал появление работ, уточняющих
и дополняющих первые теоретические оценки [3–8].
Их результаты, хотя и уменьшают расхождение с экс-
периментальными данными, но не избавляются от него
окончательно.

В настоящей работе проведены вычисления ширины
распадов вида B− → ℓ+ℓ−ℓ′−ν̄ℓ′ , где ℓ 6= ℓ′. По сравне-
нию с предшествовавшей работой [3], произведён ряд
улучшений и исправлений.

• Полностью учтены ненулевые массы заряженных
лептонов.

• Использован программный пакет Vegas [9], луч-
ше подходящий для интегрирования сингулярных
амплитуд.

• Изменена относительная фаза амплитуд, входя-
щих в полную амплитуду распада.

• Использован метод ортогональных амплитуд, су-
щественно упрощающий вычисления.

Структура работы такова. Во Введении обсуждает-
ся актуальность вычислений характеристик распадов
B− → ℓ+ℓ−ℓ′−ν̄ℓ′ и приводится обзор существующих
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результатов. В разделе 1 указаны используемые в рабо-
те определения. В разделе 2 производится явное вычис-
ление амплитуд процессов B− → ℓ+ℓ−ℓ′−ν̄ℓ′ . В разде-
ле 3 приведено подробное описание метода ортогональ-
ных амплитуд. В разделе 4 описан алгоритм примене-
ния метода ортогональных амплитуд и последующего
интегрирования дифференциальной ширины, а также
приведены численные результаты, полученные в насто-
ящей работе. В Заключении кратко представлены ос-
новные выводы работы. В Приложении A указан явный
вид безразмерных функций a(q2, k2), . . . , d(q2, k2), ис-
пользуемых в вычислениях. В Приложении B приведён
обзор необходимых для вычислений кинематических
соотношений. В Приложении C содержатся коэффици-
енты разложения слабого и электромагнитного токов,
полученные в методе ортогональных амплитуд.

1. ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ

Укажем основные определения, используемые в на-
стоящей работе. Гамильтониан для вычисления ампли-
туды четырёхлептонных распадов B− → ℓ+ℓ−ℓ′−ν̄ℓ′
имеет вид:

Heff(x) = HW (x) +Hem(x) +HVMD(x). (2)

Гамильтониан слабого перехода b → u ℓ−ν̄ℓ записыва-
ется следующим образом:

HW (x) = −GF√
2
Vub

(

ū(x)γµ(1− γ5)b(x)
)

×

×
(

ℓ̄γµ(1− γ5)νℓ(x)
)

+ h.c., (3)

где u(x), b(x) — кварковые поля, ℓ(x), νℓ(x) — лептон-
ные поля, GF — константа Ферми, Vub — матричный
элемент матрицы Кабиббо–Кобаяши–Маскава (VMD).
Матрица γ5 определена согласно γ5 = γ5 = iγ0γ1γ2γ3.
Гамильтониан электромагнитного взаимодействия за-
писывается как

Hem(x) = −e
∑

f

Qf

(

f̄(x)γµf(x)
)

Aµ(x) =

= −jµem(x)Aµ(x), (4)
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где элементарный заряд e = |e| > 0 нормирован усло-
вием e2 = 4παem, αem ≈ 1/137 — постоянная тонкой
структуры, Qf — заряд фермиона аромата f в еди-
ницах элементарного заряда, f(x) — поле фермионов
аромата f , и Aµ(x) — 4-потенциал электромагнитного
поля. Для вычисления процессов излучения виртуаль-
ного фотона в настоящей работе используется модель
доминантности векторных мезонов (VMD). Её гамиль-

тониан можно представить в виде:

HVMD(x) = −e
∑

V

fV MV V
µ(x)Aµ(x), (5)

где fV — лептонная константа распада векторного ме-
зона V , V µ(x) — поле векторных мезонов V , MV —
масса векторного мезона V .

Определим также адронные матричные элементы:

〈0 | ūγµγ5b |B−(MB, p)〉 = ifBu
pµ,

〈0 | q̄γµQ |V (MV , q, ǫ)〉 = ǫµMV fV ,

〈V (MV , q, ǫ)| ūγµb |B−(MB, p)〉 =
2V (V )(k2)

MB +MV
εµναβǫ

∗νpαqβ ,

〈V (MV , q, ǫ)| ūγµγ5b |B−(MB, p)〉 = iǫ∗ν

[

(MB +MV )A
(V )
1 (k2)gµν − A

(V )
2 (k2)

MB +MV
(p+ q)µpν−

− 2MV

k2
(A

(V )
3 (k2)−A

(V )
0 (k2))kµpν

]

,

〈B∗(MB∗ , k, ǫ)| b̄γµb |B−(MB, p)〉 =
2Vb(k

2)

MB +MB∗

εµναβǫ
∗νpαkβ,

(6)

где формфактор

A
(V )
3 (k2) =

1

2

[

A
(V )
1 (k2) +A

(V )
2 (k2)

]

+

+
MB

2MV

[

A1(k
2)−A2(k

2)
]

,

MB — масса B− мезона, pµ = qµ+kµ — его 4-импульс,
MB∗ — масса B∗− мезона, ǫµ — вектор поляризации
лёгкого (ρ0(770), ω(782)) векторного мезона V . IV –
изотопический фактор, IV = 〈ūu |V 〉. Компоненты пол-
ностью антисимметричного тензора 4 ранга εµναβ за-
даны условием ε0123 = −1. gµν — метрический тензор
пространства Минковского, gµν = diag(1,−1,−1,−1).

2. ФОРМУЛЫ ДЛЯ РАСПАДА B−
→ ℓ+ℓ−ℓ′−ν̄ℓ′

ПРИ УСЛОВИИ ℓ 6= ℓ′

Определим qν = kν1 + kν2 , k
µ = kµ3 + kµ4 .

В амплитуду распада B−(p) → γ∗(q)W−(k) →
ℓ+(k1)ℓ

−(k2)ν̄ℓ′(k3)ℓ
′−(k4) в случае, когда ℓ 6= ℓ′, вно-

сят вклад три основных типа диаграмм. Первый тип со-
ответствует испусканию виртуального фотона лёгким
u-кварком (см. рис. 1). Второй тип отвечает излучению
виртуального фотона тяжёлым b-кварком (см. рис. 2).
Третий связан с тормозным излучением: виртуальный
фотон излучается заряженным лептоном в конечном
состоянии (см. рис. 3).

a. Вклад от излучения виртуального фотона
лёгким u-кварком. Воспользуемся явным видом эф-
фективных гамильтонианов (2) — (4) и адронными
матричными элементами (6). В рамках модели доми-
нантности векторных мезонов вклад от излучения вир-
туального фотона u-кварком описывается диаграммой

Рис. 1. Диаграмма, соответствующая излучению виртуально-
го фотона u-кварком B− мезоном

Рис. 2. Диаграмма, соответствующая излучению виртуально-
го фотона b-кварком B− мезоном
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Рис. 3. Диаграмма, соответствующая тормозному излучению
виртуального фотона

рис. 4. Ей соответствует амплитуда

M(u)
fi =

A
q2

∑

V =ρ0,ω

IV MV fV
q2 −M2

V + iΓV MV
×

×F (V )
µν jν(k2, k1)J

µ(k4, k3), (7)

где лептонные токи обозначены:

jν(k2, k1) = ℓ̄(k2)γ
νℓ(−k1)

и Jµ(k4, k3) = ℓ̄′(k4)γ
µ(1− γ5)νℓ′(−k3),

(8)

размерный коффициент A = −iGF√
2
4παemVub, а струк-

тура F (V )
µν имеет вид:

F (V )
µν =

2V (V )(k2)

MB +MV
ǫµνkq − i

[

(MB +MV )A
(V )
1 (k2)gµν − A

(V )
2 (k2)

MB +MV
(k + 2q)µkν−

− 2MV

k2
(A

(V )
3 (k2)−A

(V )
0 (k2))kµkν

]

.

(9)

Здесь учтены вклады только двух легчайших век-

торных мезонов: ρ0(770) и ω(782). V (V ), A
(V )
i — форм-

факторы перехода B− → V , определённые в работе
[10]. Стоит отметить, что в работе [3] амплитуда, соот-
ветствующая этому процессу, отличается знаком. Тща-
тельные вычисления и сравнение результатов с рабо-
той [7] показывают, что противоположный знак лучше
соответствует выбранным определениям и физике про-
цесса.

b. Вклад от излучения виртуального фотона тя-
жёлым b-кварком. Процесс рис. 5 является кросс-
каналом распада B∗− → B−γ∗. Используя матричные
элементы (6), можно записать амплитуду:

M(b)
fi =

1

3

A
q2

MB∗fB∗

k2 −M2
B∗

×

× 2Vb(q
2)

MB +MB∗

εµνkqj
ν(k2, k1)J

µ(k4, k3). (10)

Мнимая добавка в пропагаторе отсутствует, поскольку
полюс не достигается в кинематически разрешённой
области (B2).

c. Вклад от тормозного излучения виртуального
фотона. Точное вычисление амплитуды тормозного
излучения (6) даёт следующее выражение:

M(brem)
fi =

A
q2

(−i)fB−gµνj
ν(k2, k1)J̃

µ(k4, k3), (11)

где

J̃µ(k4, k3) = Jµ(k4, k3) +
mℓ′

(p− k3)2 −m2
ℓ′
×

× ℓ̄′(k4)γ
µ(p̂+mℓ′)(1− γ5)νℓ′(−k3). (12)

В кинематически разрешённой области (B2) второе
слагаемое не содержит полюсов, поэтому вклад пер-
вого слагаемого в амплитуду преобладает. С хоро-
шей точностью можно предположить: J̃µ(k4, k3) ≈
Jµ(k4, k3).

d. Парциальная ширина распада. Полная ампли-
туда процесса B− → ℓ+ℓ−ℓ′−ν̄ℓ′ вычисляется как сум-
ма амплитуд процессов рис. 4–6:

Рис. 4. Диаграмма для вычисления амплитуды M
(u)
fi (см.

формулу (7)) в рамках модели доминантности векторных ме-
зонов

Mfi = M(u)
fi +M(b)

fi +M(brem)
fi ≡ A

q2
jν(k2, k1)J

µ(k4, k3)×

×
[

a(q2, k2)

MB
εµνkq − iMBb(q

2, k2)gµν − 2i
d(q2, k2)kµ − c(q2, k2)qµ

MB
kν

]

.

(13)
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Рис. 5. Диаграмма для вычисления амплитуды

M
(b)
fi (см. формулу (10)) в рамках модели доми-

нантности векторных мезонов
Рис. 6. Диаграмма для вычисления амплитуды
тормозного излучения (см. формулу (11))

Явный вид безразмерных функций a(q2, k2), ..
.., d(q2, k2), входящих в амплитуду (13), приведён
в Приложении A. Их точное вычисление — очень
непростая задача, поэтому в настоящей работе бы-
ли учтены только вклады легчайших резонансов
и тормозного излучения.

Дифференциальная парциальная ширина распада
B− → ℓ+ℓ−ℓ′−ν̄ℓ′ вычисляется по формуле:

dBr(B− → ℓ+ℓ−ℓ′−ν̄ℓ′)

dΦ4
= τB−

∑

s1,s2,s3,s4
|Mfi|2

2MB
,

(14)
где τB− – время жизни B−-мезона, 4-частичный фа-
зовый объем dΦ4 задается выражением (B5), суммиро-
вание происходит по спинам всех конечных лептонов.
Номер спина лептона соответствует номеру 4-импульса
этого лептона.

3. Описание метода ортогональных амплитуд

Метод ортогональных амплитуд, используемый в на-
стоящей работе, основан на приёме, предложенном
в статье [11]. Рассмотрим амплитуду вида

Mν
(O) = ū(q)Ôνu(−p), (15)

где ū(q) и u(−p) - спиноры, подчиняющиеся уравне-

нию Дирака, а Ôν — некоторый оператор, выражен-
ный через произведение γ-матрицы Дирака и их свёрт-
ки с 4-векторами. Введём также два вспомогательных
4-вектора uα(q, p) и vα(q, p), удовлетворяющих ряду
условий:

uαpα = uαqα = vαpα = vαqα = uαvα = 0,

u2 = v2 = −1.
(16)

Для вычислений удобно выбрать следующий явный
вид вспомогательных 4-векторов:

uα(q, p) ∼ (0, [q× p]),

vα(q, p) =
εαβµνuβ(q, p)pµqν
√

(pq)2 − p2q2
.

(17)

Амплитуда (15) может быть представлена в виде ли-
нейной комбинации четырёх базисных амплитуд:

A1(q,−p) = ū(q)u(−p),

A2(q,−p) = ū(q) û(q, p)u(−p),

A3(q,−p) = ū(q) v̂(q, p)u(−p),

A4(q,−p) = ū(q) û(q, p)v̂(q, p)u(−p),

(18)

где û(q, p) = uα(q, p)γα, v̂ = vα(q, p)γα.
Выберем в качестве скалярного произведения в про-

странстве амплитуд операцию суммирования по поля-
ризациям спиноров. Тогда базис (18) является ортого-
нальным. Квадраты норм базисных амплитуд отличны
от единицы, их можно вычислить согласно формуле:

|Ai|2 =
∑

s1,s2

AiA
†
i . (19)

Вычисления приводят к следующим явным выражени-
ям:

|A1|2 = |A4|2 = 4((pq) +mpmq),

|A2|2 = |A3|2 = 4((pq)−mpmq),
(20)

где mp и mq — массы фермионов с 4-импульсами p и q
соответственно. С учётом приведённых определений,
разложение амплитуды (15) принимает вид:

Mν
(O) =

4
∑

i=1

1

|Ai|2
ων
i Ai, (21)

ων
i =

∑

s1,s2

Mν
(O)A

†
i . (22)

Вычисление коэффициентов разложения происходит
с использованием среды для символьных вычислений
«Wolfram Mathematica» [12] и библиотеки «FeynCalc»
[13–16]. Полученное выражение позволяет вычислить
квадрат модуля амплитуды (15) без необходимости яв-
но учитывать интерференционные члены:

∑

s1,s2

Mµ
(O)(M

ν
(O))

† =

4
∑

i=1

1

|Ai|2
cµi (c

ν
i )

∗. (23)
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Расширим описанный метод на амплитуды, содержа-
щие несколько пар спиноров. Рассмотрим амплитуду

M = Fµνj
νJµ, (24)

где

jν = ū(k2)Ô
νu(−k1), Jµ = ū(k4)R̂

µu(−k3). (25)

Разложения токов (25) по базисным амплитудам запи-
сываются по отдельности. При этом для каждого из
токов необходимо сконструировать свой набор базис-
ных амплитуд:

Ai = Ai(k2,−k1), Ãj = Ãj(k4,−k3); (26)

jν =

4
∑

i=1

1

|Ai|2
λν
iAi, Jµ =

4
∑

j=1

1

|Ãj |2
χν
j Ãj ; (27)

λν
i =

∑

s1,s2

jνA†
i , χµ

j =
∑

s3,s4

JµÃ†
i . (28)

Тогда разложение амплитуды (24) принимает вид:

M = Fµνj
νJµ =

4
∑

i=1

4
∑

j=1

1

|Ai|2|Ãj |2
Fµνλ

ν
i χ

µ
j AiÃj .

(29)
Квадрат модуля амплитуды (24) возможно представить
в виде суммы, аналогичной выражению (23):

∑

s1,s2,s3,s4

|M|2 =

4
∑

i=1

4
∑

j=1

1

|Ai|2|Ãj |2
|Fµνλ

ν
i χ

µ
j |2. (30)

В настоящей работе описанная процедура была приме-
нена к амплитуде (13). Используя разложение (27) для
токов (8), можно записать квадрат модуля амплитуды
(13) в виде суммы:

∑

s1,s2,s3,s4

|Mfi|2 =

4
∑

i=1

4
∑

j=1

1

|Ai|2|Ãj |2
|A|2
q4

|Fµνλ
ν
i χ

µ
j |2,

(31)

где

Fµν =
a(q2, k2)

MB
εµνkq − iMBb(q

2, k2)gµν−

− 2i
d(q2, k2)kµ − c(q2, k2)qµ

MB
kν . (32)

Коэффициенты разложения токов (8) по базисным ам-
плитудам приведены в Приложении C.

4. ЧИСЛЕННЫЕ РЕЗУЛЬТАТЫ

В настоящей работе использованы значения масс,
времён жизни, ширин распадов мезонов и матрич-
ных элементов ККМ-матрицы из [17]. Параметри-
зация формфакторов переходов B− → ω, ρ0 взята из
работы [10]. Лептонные константы fρ0 = 154 МэВ
и fω = 46 МэВ были вычислены в работе [18].
Формфактор Vb(q

2) и лептонные константы распада
fB− = 191 МэВ и fB∗ = 183 МэВ были вычислены
в работе [1].

A. Метод интегрирования

Парциальная ширина распада B− → ℓ+ℓ−ℓ′−ν̄ℓ′ мо-
жет быть получена в результате интегрирования фор-
мулы (14):

Br(B− → ℓ+ℓ−ℓ′−ν̄ℓ′) =

=
τB−

2MB

∫

dΦ4

(

∑

s1,s2,s3,s4

|Mfi|2
)

=

=
τB−

2MB

∫

dΦ4





|A|2
q4

4
∑

i=1

4
∑

j=1

1

|Ai|2|Ãj |2
|Fµνλ

ν
i χ

µ
j |2


 .

(33)

В настоящей работе интегрирование было проведено
методом Монте–Карло при помощи программного па-
кета Vegas [9]. В методе Монте–Карло интеграл (33)
преобразуется следующим образом:

Br(B− → ℓ+ℓ−ℓ′−ν̄ℓ′) ≈
〈

8πΦ4
τB−

2MB

|A|2
q4

4
∑

i=1

4
∑

j=1

1

|Ai|2|Ãj |2
|Fµνλ

ν
i χ

µ
j |2
〉

N

, (34)

где угловыми скобками показано усреднение по N сге-
нерированным событиям, Φ4 определено в (B5). Для
удобства вычислений были введены безразмерные пе-

ременные x12 = q2

M2
B

и x34 = k2

M2
B

. По этим переменным

производилось интегрирование, по ним же были по-
строены дифференциальные распределения.

Алгоритм вычисления содержит следующие шаги:

• генерация переменных x12 и x34 в кинематически
разрешённой области (B2). Пространство значе-
ний (x12, x34) используется в качестве области

интегрирования в пакете Vegas;

• генерация угловых переменных y12, y34 и ϕ, опре-
делённых в Приложении B;

• вычисление явного вида 4-импульсов k1, . . . k4;

• вычисление коэффициентов разложения токов по
базисным амплитудам, согласно процедуре из
раздела 3. На этом шаге необходим явный вид
4-импульсов, полученный на предыдущем шаге;
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• вычисление значения усредняемой функции из
выражения (34).

При генерации событий с помощью программного
пакета Vegas, происходит постепенная адаптация ин-
тегратора к виду интегрируемой функции. При повтор-
ном запуске интегратора большее количество собы-
тий генерируется в областях с наибольшим значением
функции, таких как резонансные пики. Благодаря это-
му интегрирование происходит точнее и эффективнее.
По этой причине в начале работы интегратор требует-
ся несколько раз запустить для «обучения», игнорируя
полученный при этом результат. В настоящей работе
«обучение» интегратора было произведено с исполь-
зованием аналитического двукратного дифференциаль-
ного распределения из работы [1] (формула (16)). Это
выражение менее точно, однако оно может быть вычис-
лено быстрее, а также обладает всеми особенностями
дифференциального распределения, полученного в на-
стоящей работе, что важно для «обучения» интеграто-
ра. Применение описанного приёма позволило значи-
тельно ускорить процесс интегрирования.

Вычисления были произведены для двух процессов:
B− → µ+µ−e−ν̄e и B− → e+e−µ−ν̄µ.

B. Полная парциальная ширина распада
B− → µ+µ−e−ν̄e.

В качестве кинематических ограничений снизу бы-

ли выбраны естественные границы: x
(min)
12 = 4m̂2

µ,

x
(min)
34 = m̂2

e, где m̂ℓ = mℓ

MB
— обезразмеренная мас-

са лептона. Численное интегрирование даёт значение
полной парциальной ширины:

Br(B− → µ+µ−e−ν̄e) ≈

≈ 0.3× 10−7 · τB−

1.638× 10−12c

|Vub|2
1.46× 10−5

. (35)

Результат хорошо согласуется с оценками, приведён-
ными в работах [7, 8], что подтверждает применимость
выбранного подхода и является аргументом в пользу
корректности оценок. Неопределённость результата со-
ставляет около 30%, её основной источник — неопре-
делённость параметризации адронных формфакторов.

C. Полная парциальная ширина распада
B− → e+e−µ−ν̄µ.

В этом распаде естественные границы непри-
менимы, поскольку эффективность регистрации
электрон–позитронных пар с инвариантной массой
√

q2 ≤ Λ ≈ 100 МэВ крайне мала. В связи с этим
нижние границы выбраны следующим образом:

x
(min)
34 = m̂2

µ, x(min)
12 = Λ2

MB
. Численное интегрирование

даёт:

Br(B− → e+e−µ−ν̄µ)|x(min)
12 =0.0003

≈

≈ 0.5× 10−7 · τB−

1.638× 10−12c

|Vub|2
1.46× 10−5

. (36)

Этот результат также согласуется с прежними оценка-
ми.

D. Дифференциальные распределения

Также в настоящей работе были получены однократ-
ные и двукратные дифференциальные распределения
распадов B− → µ+µ−e−ν̄e и B− → µ+µ−e−ν̄e по
переменным x12 и x34. Результаты представлены на
рис. 7 — 9.

A Б

Рис. 7. Двукратные дифференциальные распределения распадов: A — B− → µ+µ−e−ν̄e; B — B− → e+e−µ−ν̄µ
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Рис. 8. Однократные дифференциальные распределения по переменной x12 распадов: A — B− → µ+µ−e−ν̄e; B — B− →
e+e−µ−ν̄µ
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Рис. 9. Однократные дифференциальные распределения по переменной x34 распадов: A — B− → µ+µ−e−ν̄e; B — B− →
e+e−µ−ν̄µ

На графиках изображена область значений пере-
менной x12 < 0.04, что соответствует области, в ко-
торой применима рассмотренная в настоящей рабо-
те модель, содержащая два легчайших резонанса:
ρ0(770) и ω(782). Для расширения области приме-
нимости требуется учесть вклад тяжёлых резонан-
сов (ω(1420), ρ0(1450), ω(1650) и ρ0(1700)) и приме-
нить вычитательную процедуру, описанную в работах
[7, 19]. На распределениях хорошо виден узкий ре-
зонансный пик, вызванный ω(782) мезоном. Резонанс-
ный пик ρ0(770) мезона ниже и шире, поэтому заметен
хуже. В области малых q2 значительный вклад вно-
сят и резонансный процесс (4), и тормозное излучение
(6). Относительная фаза амплитуд этих двух процес-
сов имеет значительное влияние на результат вычис-

лений и вид распределения. Относительная фаза, по-
лученная в настоящей работе, согласуется с работами
[7, 8] и отличается от работ [1, 3]. Результаты более
поздних работ и настоящей работы лучше согласуются
с экспериментальными данными.

ЗАКЛЮЧЕНИЕ

В настоящей работе:
• с помощью метода ортогональных амплитуд по-

лучены различные характеристики распадов тя-
жёлых B− мезонов на три заряженных лепто-
на и нейтрино. Была показана эффективность
метода для учёта ненулевых масс заряженных
лептонов.
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• в рамках Стандартной модели получено предска-
зание для парциальной ширины распада B− →
µ+µ−e−ν̄e при учёте ненулевых масс заряженных
лептонов:

Br(B− → µ+µ−e−ν̄e) ≈

≈ 0.3× 10−7 · τB−

1.638× 10−12c

|Vub|2
1.46× 10−5

. (37)

Неопределённость приведённого результата со-
ставляет порядка 30%.

• в рамках Стандартной модели получено предска-
зание для парциальной ширины распада B− →
e+e−µ−ν̄µ при учёте ненулевых масс заряженных
лептонов:

Br(B− → e+e−µ−ν̄µ)|x(min)
12 =0.0003

≈

≈ 0.5× 10−7 · τB−

1.638× 10−12c

|Vub|2
1.46× 10−5

. (38)

Неопределённость приведённого результата так-
же составляет порядка 30%.

• построены однократные и двукратные диффе-
ренциальные распределения по переменным x12

и x34 в распадах B− → ℓ+ℓ−ℓ′−ν̄ℓ′ .

Автор выражает благодарность научному сотрудни-
ку ФИАН Багдатовой А.Г., главному научному сотруд-
нику ФИАН Баранову С.П. и доценту Физического фа-
культета МГУ Никитину Н.В. за совместную работу
и плодотворные дискуссии, способствовавшие появле-
нию и улучшению настоящей работы.

Приложение A: Явный вид функций
a(q2, k2), . . . , d(q2, k2)

Явные выражения для безразмерных функций
a(q2, k2) ≡ a(x12, x34), . . . , d(q

2, k2) ≡ d(x12, x34), необ-
ходимые для вычисления амплитуды (13), могут быть
записаны следующим образом:

a(x12, x34) =
1

3

M̂B∗ f̂B∗

x34 − M̂∗2
B

2Vb(M
2
Bx12)

1 + M̂B∗

+
∑

V =ρ0,ω

IV M̂V f̂V

x12 − M̂2
V + iΓ̂V M̂V

2V (V )(M2
Bx34)

1 + M̂V

,

b(x12, x34) = fB− +
∑

V =ρ0,ω

IV M̂V f̂V

x12 − M̂2
V + iΓ̂V M̂V

(1 + M̂V )A
(V )
1 (M2

Bx34),

c(x12, x34) =
∑

V=ρ0,ω

IV M̂V f̂V

x12 − M̂2
V + iΓ̂V M̂V

A
(V )
2 (M2

Bx34)

1 + M̂V

, d(x12, x34) =
∑

V=ρ0,ω

IV M̂V f̂V

x12 − M̂2
V + iΓ̂V M̂V

×
(

M̂V

x34

(

A
(V )
0 (M2

Bx34)−A
(V )
3 (M2

Bx34)
)

− A
(V )
2 (M2

Bx34)

2(1 + M̂V )

)

.

(A1)

Для удобства вычислений все величины, входящие
в функции (A1), обезразмерены. Безразмерные пере-
менные x12 = q2/M2

B и x34 = k2/M2
B определены

в Приложении B. Безразмерные постоянные заданы
следующим образом: f̂B− = fB−/MB, f̂B∗ = fB∗/MB,
M̂V = MV /MB, M̂B∗ = MB∗/MB, Γ̂V = ΓV /MB

и Γ̂B∗ = ΓB∗/MB. Заметим, что формфакторы Vb(q
2),

V (k2), A1(k
2) и A2(k

2) также являются безразмерны-
ми функциями.

Приложение B: Фазовый объём четырёх частиц

Обозначим через ki 4-импульсы конечных леп-
тонов в четырехлептонном распаде B−(p) →
ℓ+(k1)ℓ

−(k2)ν̄ℓ′(k3)ℓ
′−(k4), где i = {1, 2, 3, 4}. Введем

следующие 4-импульсы:

q = k1+k2; k = k3+k4; p = q+k = k1+k2+k3+k4
(B1)

и p2 = M2
B. Удобно пользоваться безразмерными пере-

менными xij =
(ki+kj)

2

M2
B

. В настоящей статье исполь-

зуются x12 = q2

M2
B

и x34 = k2

M2
B

. Интервалы изменения

переменной x12 и переменной x34 (при фиксированном
значении переменной x12) следующие:

4m̂2
ℓ ≤ x12 ≤ (1− m̂ℓ′)

2;

m̂2
ℓ′ ≤ x34 ≤ (1−√

x12)
2,

(B2)

где m̂ℓ = mℓ/MB и m̂ℓ′ = mℓ′/MB — безразмерные
массы лептонов.

Используя технику книги [20], введём угол θ12 меж-
ду направлениями импульсов положительно заряжен-
ного лептона и B− мезона в системе покоя пары ℓ+ℓ−

и угол θ34 между направлениями импульсов антиней-
трино и B− мезона в системе покоя пары ν̄ℓ′ℓ

′. Опре-
делим переменные yij ≡ cos θij . Определим также угол
ϕ между плоскостями, образованными парами импуль-
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сов {k1,k2} и {k3,k4} (см. рис. 10).

Рис. 10. Кинематические переменные для распада
B−(p) → ℓ+(k1)ℓ

−(k2)ν̄ℓ′(k3)ℓ
′−(k4). Углы θ12 и θ34 заданы

в системах покоя пар {ℓ−, ℓ−} и {ℓ′−, ν̄ℓ′} соответственно.
Угол ϕ задан в системе покоя B− мезона как угол между
плоскостями, образованными парами импульсов {k1,k2}
и {k3,k4}

Четырёхчастичный фазовый объём конечного состо-
яния имеет вид:

dΦ4 = M4
B

dx12

2π

dx34

2π
dΦ

(qk)
2 dΦ

(12)
2 dΦ

(34)
2 , (B3)

где, если учесть ненулевые массы лептонов и использо-
вать переменные x12, x34, y12, y34 и ϕ в качестве неза-
висимых переменных интегрирования, можно напи-
сать:

Φ
(qk)
2 =

1

23π
λ1/2(1, x12, x34),

dΦ
(12)
2 =

1

24π

√

1− 4m̂2
ℓ

x12
dy12;

dΦ
(34)
2 =

1

25π2

(

1− m̂2
ℓ′

x34

)

dy34 dϕ.

(B4)

В итоге приходим к выражению для четырёхчастич-
ного фазового объёма:

dΦ4 =
M4

B

214π6
λ1/2(1, x12, x34)×

×
√

1− 4m̂2

x12

(

1− m̂2

x34

)

dx12dx34dy12dy34dϕ,

Φ4 =
M4

B

214π6
λ1/2(1, x12, x34)

√

1− 4m̂2

x12

(

1− m̂2

x34

)

.

(B5)

Приложение C: Коэффициенты разложения лептонных
токов по базисным амплитудам

Рассмотрим два вида лептонных токов: электромаг-
нитный ток jν(k2, k1) = ℓ̄(k2)γ

νℓ(−k1) и слабый V −A
ток Jµ(k4, k3) = ℓ̄′(k4)γ

µ(1−γ5)νℓ′(−k3). Коэффициен-
ты разложения каждого из токов по базисным ампли-
тудам можно найти, следуя выражениям (25 — 28), ес-
ли положить Ôν = γν и R̂µ = γµ(1− γ5) соответствен-
но. Обозначим вспомогательные 4-векторы u12, u34, v12
и v34 следующим образом:

uν(k1, k2) = uν
12, vν(k1, k2) = vν12,

uµ(k3, k4) = uν
34, vµ(k3, k4) = vν34.

(C1)

Вычисления приводят к следующим явным выраже-
ниям (с учётом нулевой массы антинейтрино m3 = 0):

λν
1 = 4m2k

ν
1 − 4m1k

ν
2 , χµ

1 = 4m4k
µ
3 ;

λν
2 = −4uν

12((k1k2) +m1m2),

χµ
2 = −4uµ

34(k3k4)− 4ivµ34(k3k4);

λν
3 = −4vν12((k1k2) +m1m2),

χµ
3 = −4vµ34(k3k4) + 4iuµ

34(k3k4);

λν
4 = 0, χµ

3 = 4im4k
µ
4 .

(C2)
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B−

→ µ+µ−e−ν̄e decay in orthogonal amplitudes method

D.S. Ostapovich

Department of Nuclear Physics and Quantum Collision Theory, Faculty of Physics,
Lomonosov Moscow State University

Moscow 119991, Russia
E-mail: ostapovich.ds20@physics.msu.ru

In the present paper partial widths and differential ditributions of B− → µ+µ−e−ν̄e and B− → e+e−µ−ν̄µ decays
were calculated, utilizing the orthogonal amlitudes method. Virtual photon emission by the light quark (VMD model),
virtual photon emission by the heavy quark and bremsstrahlung were accounted for in calculations. The results
obtained are in a satisfactory agreement with experimental constraints.

PACS: 13.20.He, 14.40.Nd, 12.15.Ji.
Keywords: rare B-meson decays, orthogonal amplitudes method, search for new physics.
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