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Рассматривается задача оптимального управления динамической системой при наличии неточной
информации об управляемой системе. Предложен подход для оптимального управления на осно-
ве предиктивной модели с процедурой непрерывной калибровки параметров в режиме реального
времени, основанный на накоплении калибровочной канонической информации. Такой подход не
требует хранения полной истории данных и позволяет пересчитывать параметры на каждом ша-
ге управления. Разработанный в статье алгоритм проиллюстрирован на примере задачи движения
объекта в вязкой среде. Результаты численного моделирования показали значительное улучшение
качества управления после калибровки параметров: отсутствие осцилляций, снижение перерегу-
лирования и уменьшение значений целевой функции. Отметим также, что важной особенностью
предложенного подхода является возможность уточнения параметров модели без остановки штат-
ного функционирования системы.
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ВВЕДЕНИЕ

В наше время методы управления — одна из клю-
чевых областей прикладной математики, включающая
в себя большой спектр подходов: от линейного оце-
нивания до задач оптимизации. С помощью таких
алгоритмов решаются задачи управления объектами
различной природы: от средств передвижения (соста-
вы метро, роботы-доставщики, дроны и пр.) [1, 2]
до целых промышленных заводов (переработка неф-
тяного и газового сырья, химические заводы) [3–6].
Так, например, на промышленных объектах регулиро-
вание температуры внутри помещения с использова-
нием кондиционеров и вентиляторов зачастую реали-
зовывается с помощью простых методов управления,
в основе которых лежит алгоритм пропорционально-
интегрально-дифференциального (ПИД) регулирова-
ния [6, 7]. В то же время управление основным
производственным циклом может быть реализовано
с помощью более сложных, комплексных алгоритмов
наподобие системы усовершенствованного управления
технологическим процессом (СУУТП, англ. APC —
Advanced Processing Control) [8].

В данной работе мы рассматриваем алгоритм опти-
мального управления физической системой на основе
предиктивных моделей. Основной проблемой в настоя-
щей задаче является неточность априорной информа-
ции об управляемой системе, такая проблема реша-
ется с помощью калибровки параметров модели. Су-
ществуют различные методы уточнения, в частности,
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step-тест или PRBS-тест [9], в ходе которых произво-
дится серия специальных управляющих сигналов и по-
сле вручную или в полуавтоматическом режиме про-
исходит настройка параметров системы. В настоящей
работе предложен подход, позволяющий предотвратить
дополнительные синтетические возмущения в системе.
То есть такой алгоритм производит калибровку пара-
метров системы прямо по ходу её управления, что поз-
воляет работать объекту в штатном режиме.

1. ПОСТАНОВКА ЗАДАЧИ ПРЕДИКТИВНОГО
УПРАВЛЕНИЯ

Исследуется динамическая система в пространстве
состояний со следующим переходным уравнением:

xt+1 = Axt +But + ωt (1)

где xt ∈ R
n — вектор состояния системы, в момент

времени t, ut ∈ R
m — вектор управляющих воздей-

ствий на систему, в момент времени t, ωt ∈ R
n —

вектор возмущений на систему, в момент времени t,
A,B — параметры системы, представленные матрица-
ми, которые принадлежат R

n×n, R
n×m соответствен-

но. Изначальная цель — привести систему к некоторо-
му желаемому состоянию rt, которое называют устав-
кой. Привести состояние системы к уставке необходи-
мо в определенном смысле оптимальным образом. А
именно, сформулируем задачу управления как задачу
оптимизации целевой функции:

min
u∈U

J(x, u, r) (2)
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при следующих ограничениях:
{
ut ∈ U, ∀t

xt ∈ X, ∀t
(3)

где U ⊂ R
m — множество допустимых воздействий

и X ⊂ R
n — множество допустимых состояний.

Мы считаем, что значение вектора уставки rt зада-
ется на некотором горизонте, т.е. существует некото-
рое планирование данного параметра. Благодаря это-
му планированию мы можем учитывать будущие из-
менения уставки и заранее принимать соответствую-
щие меры по управлению. Также отметим, что осцил-
ляция вектора ut и его быстрые изменения в реальной
физической системе могут привести к преждевремен-
ному износу оборудования или его поломке, поэтому
при управлении исследуемой системой следует учесть
данный фактор. Для этого запишем целевую функцию
в следующем виде:

J(x, u, r) =

t0+Nu∑

t=t0

(
||xt − rt||

2 + ||∆ut||
2
)

(4)

где ∆ut = ut − ut−1,∆u0 = u0, ∆t — шаг дискретиза-
ции нашей системы, Nu = T/∆t — горизонт управле-
ния. Первое слагаемое представляет собой интеграль-
ную составляющую разности между уставкой и состо-
янием, второй член носит регуляризационный харак-
тер, который позволяет избежать сильных осцилляций
при управлении. В каждый момент времени происхо-
дит расчет оптимальной траектории {xi}, которая по-
лучается с помощью последовательности оптимальных
воздействий {ui}, при этом для следующего воздей-
ствия берется первый член последовательности {ui}.
Для того, чтобы делать расчет целевой функции на го-
ризонте управления, необходимо рассчитывать прогноз
состояния системы в каждый момент времени.

Использование достаточно большого горизонта пла-
нирования может заметно повысить качество управле-
ния. Рассмотрим два примера регулирования с оди-
наковыми значениями коэффициентов A,B, но в од-
ном случае возьмем горизонт планирования Nu = 4,
а в другом случае Nu = 20. В первом случае изобра-
жено управление с небольшим горизонтом, при этом
управление начинается только после изменения устав-
ки, и кроме того присутствует сильное перерегулирова-
ние, т.е. позиция объекта уходит «за» значения устав-
ки. В случае с длинным горизонтом изменения начи-
наются заранее, что позволяет избежать сильного пе-
ререгулирования (рис. 1).

Можно заметить (рис. 2), что при небольшом значе-
нии горизонта планирования (Nu = 4) график модуля
разности уставки и состояния почти на всем интерва-
ле управления принимает значения больше, чем при
горизонте планирования большего размера (Nu = 20).
Наиболее значимый интервал (t ∈ (4, 5)), где ситу-
ация обратная, находится непосредственно перед пе-
реключением уставки. Здесь, благодаря более длинно-
му горизонту планирования, переход на новую уставку

удалось начать заблаговременно. Табл. 1 также под-
тверждает, что более длинный горизонт планирования
обеспечил лучшее качество управления.
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Рис. 1. Управление системой с длинным и коротким горизон-
том управления
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Рис. 2. График норм разности уставки и состояния системы

Таблица 1. Сравнение среднеквадратичных отклонений со-
стояния системы от уставки для разных горизонтов планиро-
вания

1

t1−t0

∑
t1

t=t0
||xt − rt||

2

Nu = 20 0.97

Nu = 4 2.02

Как было показано выше, использование достаточно
большого горизонта планирования может заметно по-
высить качество управления. Однако, если априорная
информация о параметрах модели (матричные коэффи-
циенты A,B) неточная, то качество управления может
сильно снизиться из-за несоответствия между реаль-
ными матрицами A и B и их значениями, используе-
мыми при управлении. Это приведет к несоответствию
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планируемой траектории и достигнутой реализации по-
скольку прогноз для (4) рассчитывается с помощью
уравнения перехода (1) .

2. СПОСОБ УТОЧНЕНИЯ ПАРАМЕТРОВ СИСТЕМЫ

Нередко параметры системы известны неточно или
неизвестны вовсе, поэтому важной частью данного ис-
следования является рассмотрение возможности уточ-
нения модели системы в реальном времени. Рассмот-
рим функционал, описывающий расхождение между
реальным и прогнозируемым поведением системы:

Q(A,B) =

t1∑

t=t0

||(xt −Axt−1 −But−1)||
2

Минимизация этого функционала по A и B да-
ет оценки наименьших квадратов для этих мат-

риц Â и B̂. Если ввести обозначения: ψt = xt,

φt =

(
xt−1

ut−1

)
, K =

(
A B

)
, тогда искомые оцен-

ки выражаются аналогично [10] и имеет следую-

щий вид: K̂ = ΨΦT
(
ΦΦT

)−1
, где Ψ = (ψ1, ..., ψn),

Φ = (φ1, ..., φn). Вместо того, чтобы хранить матри-
цы Ψ,Φ в полном объеме, можно извлекать из них
необходимую информацию для получения оценок:

{
G = ΨΦT =

∑t1
t=t0

ψtφ
T
t

H = ΦΦT =
∑t1

t=t0
φtφ

T
t

(5)

Таким образом, в процессе управления системой, на
отрезке времени от t0 до t1, можно организовать накоп-
ление калибровочной канонической информации сле-
дующего вида:





C =

(
G

H

)
=
∑t1

t=t0
Ct,

Ct =




xt

xt−1

ut−1



(
xt−1

ut−1

)T (6)

Здесь матрицы G ∈ R
n×(n+m) и H ∈ R

(n+m)×(n+m)

удобно рассматривать как блоки матрицы
C ∈ R

(2n+m)×(n+m).
Отметим, что для построения матрицы C нет необхо-

димости хранить все данные за длинный промежуток
времени. Достаточно лишь в каждый момент времени
t прибавлять к ней матрицу Ct.

При этом в любой момент времени, оценки Â и B̂
могут быть вычислены исключительно на основе на-
копленной на данный момент канонической информа-
ции:

(
Â B̂

)
= GH−1 (7)

3. ПРИМЕРЫ ЧИСЛЕННОГО МОДЕЛИРОВАНИЯ

Рассмотрим результаты численного моделирования
исследуемой задачи на простом примере:

{
Fµ = −µẋ,

mẍ = Fµ + Fu,
(8)

где Fµ — сила вязкости, пропорциональная скорости
движения; Fu — сила управления объектом — это
внешняя сила, которую мы контролируем; x — коор-
дината положения центра масс объекта; m, µ — масса
объекта и коэффициент вязкости среды соответствен-
но.

Такая система описывает одномерное движение объ-
екта в вязкой среде. Представим систему (8) через си-
стему дифференциальных уравнений первого порядка:

{
ẋ1 = x2,

ẋ2 = (−µx2 + Fu)/m,

Приведем эту систему к дискретному виду:

{
xt+1
1 = xt1 + xt2∆t,

xt+1
2 = xt2(1−

µ∆t
m

) + ut∆t
m
.

Запишем эту систему в стандартном виде (1),
где параметры выражаются следующим образом:

A =

(
1 ∆t

0 1− µ∆t
m

)
, B =

(
0 0

0 ∆t
m

)
. Для моделиро-

вания возьмем следующие значения физических вели-
чин: (m = 1, µ = 10). В качестве исходной инфор-
мации о системе были заданы случайные значения для

параметров (Ã = A+δA, B̃ = B+δB) и далее был про-
веден цикл управления с одновременный накоплением
информации вида (6).

Отметим также, что, в соответствии с (1) динамика
системы подвержена случайным возмущениям. Кроме
того, в качестве исходных данных в задаче оптими-
зации и при калибровке параметров, вместо реально-
го положения используется «измеренное» положение
с некоторой погрешностью:

x̃t = xt + εt (9)

где εt ∈ N(~0, Σ) — нормальное распределение. Такое
«измеренное» положение на графиках ниже отмечено
красным цветом.

На рис. 3 можно заметить сильные колебания поло-
жения системы и силы управления, что говорит о низ-
ком качестве управления, о чем также свидетельству-
ют значения целевой функции. После первого цикла
управления, изображенного на рис. 3 проведено уточ-
нение параметров согласно (7) и запущен еще один
цикл управления при тех же начальных данных и па-
раметрах уставки (рис. 4). При всех одинаковых па-
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Рис. 3. Графики системы с неточной априорной информацией
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Рис. 4. Графики системы после уточнения априорной информации

раметрах численной модели качество управления та-
кой моделью стало лучше. На верхнем графике вид-
но, что управление стало более плавным и предсказуе-

мым, колебания в силе управления отсутствуют и зна-
чения целевой функции значительно ниже по сравне-
нию с предыдущим примером.
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ЗАКЛЮЧЕНИЕ

В настоящей работе предложен алгоритм калибровки
в реальном времени для оптимального управления фи-
зической системой на основе предиктивных моделей.
Разработанный алгоритм позволяет уточнять парамет-
ры системы путем накопления калибровочной инфор-
мации в компактном виде без необходимости хране-
ния полной истории данных об объекте управления.
Результаты численного эксперимента, полученные для
задачи движения объекта в вязкой среде, демонстри-
руют существенное улучшение качества управления,
что в дальнейшем дает возможность применять раз-

работанный метод к более сложным системам. Реали-
зованный алгоритм позволяет производить уточнение
информации прямо по ходу работы системы, благодаря
чему объект может функционировать в штатном режи-
ме, без необходимости останова или проведения спе-
циальных работ. Предложенный подход представляет
практическую ценность для задач управления техно-
логическими процессами, где точность моделей часто
ограничена, а остановка производства для калибровки
нежелательна.
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Calibration and optimal control for inaccurate predictive models
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The problem of optimal control of a dynamic system in the presence of inaccurate information about the controlled
system is considered. An approach for optimal control based on a predictive model with a procedure for continuous
real-time parameter calibration is proposed, based on the accumulation of canonical calibration information. This
approach eliminates the need to store the full data history and allows for recalculating the parameters at each
control step. The algorithm developed in this paper is illustrated using the example of an object moving in a viscous
medium. Numerical simulation results demonstrate a significant improvement in control performance after parameter
calibration: the absence of oscillations, reduced overshoot, and decreased objective function values. It should also
be noted that an important feature of the proposed approach is the ability to refine the model parameters without
interrupting the normal operation of the system.
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Keywords: automatic control, optimization, state space, quadratic programming, feedback control, real-time calibration
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