Оценка влияния кюрия на нейтронно-физические и теплофизические характеристики реакторов типа ВВЭР и БН в условиях гомогенного размещения

В.В. Храмков,* Д.Р. Алиев,† А.А. Воронцова, Э.А. Гердт, М.А. Попов, В.О. Скулкин Обнинский институт атомной энергетики — филиал Национального исследовательского ядерного университета «МИФИ», отделение ядерной физики и технологий Калужская область, 249039, городской округ «Город Обнинск», г. Обнинск, тер. Студгородок, д. 1 (Поступила в редакцию 03.06.2025; подписана в печать 28.09.2025)

Целью работы является исследование влияние кюрия на нейтронно-физические и теплофизические характеристики ВВЭР-1200 и БН-600. Для проведения расчетов были созданы нейтроннофизическая и теплофизическая модели тепловыделяющих сборок (далее ТВС) реакторов. Кюрий добавлялся к основному топливу гомогенно в различных долях в диапазоне от 0.1 до 20% в виде оксида $\rm CmO_2$. Рассматриваемые характеристики: коэффициент размножения нейтронов в бесконечной среде, энергетический спектр, пространственное распределение температур в тепловыделяющем элементе (далее ТВЭЛе). Более сильное воздействие наблюдается на реактивность модели ВВЭР-1200, где $K_{\rm беск}$ уменьшается на 3.85%. В случае с БН-600 максимальное падение составило 3%. Добавление кюрия способствует увеличению плотности потока нейтронов в тепловой области ВВЭР-1200. Также кюрий значительно влияет на реактивность быстрого реактора, что говорит о возможности использования его в качестве топлива. При добавлении оксида кюрия максимальные температуры топлива снижаются на величину порядка 500° .

PACS: 89.30.Gg. УДК: 621.039.54.

Ключевые слова: кюрий, минорные актиниды, отработавшее ядерное топливо, быстрые реакторы, тепловые реакторы, коэффициент размножения нейтронов, градиент температур, спектр нейтронов, топливная кампания.

ВВЕДЕНИЕ

В настоящей работе рассматривается влияние кюрия на нейтронно-физические характеристики реакторов. Кюрий, являющийся представителем минорных актинидов, нарабатывается во время эксплуатации ядерного реактора путём трансмутации из урана-238 и других трансурановых элементов. В настоящее время данный элемент не используется, однако он является одним из основных источников радиотоксичности в отработавшем ядерном топливе (далее ОЯТ), что усложняет его утилизацию и захоронение. В следствие этого, актуальна проблема с накоплением кюрия [1].

Минорные актиниды нарабатываются в результате ядерных превращений элементов ядерного топлива в реакторе и извлекаются из него в составе ОЯТ. Конкретный изотопный состав и количество минорных актинидов (далее МА) в ОЯТ сильно зависят от типа исходной топливной композиции, обогащения, нейтронного спектра реактора, глубины выгорания топлива, продолжительности выдержки облученного топлива после выгрузки из реактора. Основными нарабатываемыми изотопами кюрия тепловых реакторов являются $^{242}{\rm Cm},~^{243}{\rm Cm}$ и $^{244}{\rm Cm}.$ Их образование происходит в активной зоне через механизм последовательного нейтронного захвата: ядра тяжелых элементов, таких как уран или плутоний, поглощают нейтроны, что приводит к увеличению их массового числа. После каждого захвата нейтрона ядро может претерпевать бета-

распад, в ходе которого нейтрон превращается в протон, повышая атомный номер элемента. Многократное повторение этих процессов создаёт цепочку ядерных превращений, в результате которой формируются всё более тяжёлые изотопы, включая кюрий [2]. Данные процессы показаны на рис. 1.

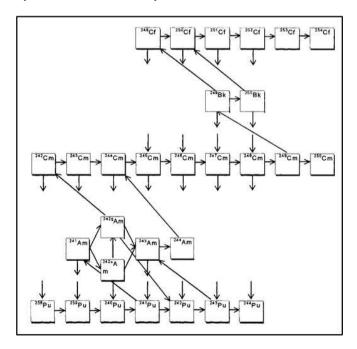


Рис. 1. Цепочки ядерных превращений

Одним из способов утилизации MA является их трансмутация — добавление в топливо реакторов. Это можно осуществить двумя подходами: гомогенно, до-

^{*} vsevolod.200532@gmail.com

[†] alievdv23@oiate.ru

бавляя определённые малые доли МА в основные топливные таблетки, или гетерогенно, изготавливая отдельные таблетки, мавэлы или ТВС. На эффективность трансмутации в большей степени влияет рабочий спектр активной зоны реактора. В основном для этих целей рассматриваются реакторы на быстрых нейтронах, но также проводятся исследования о целесообразности трансмутации в тепловом спектре [3].

Масштабная трансмутация тяжелых ядер в осколки деления в настоящее время и в ближайшие десятилетия будет возможна только в реакторах на тепловых нейтронах, поэтому имеет смысл рассмотреть и оценить возможность трансмутации и выжигания в данном спектре. На модели реактора ВВЭР-1000 было рассчитано, что выигрыш в радиоактивности кюрия наблюдается через 5-30 лет облучения, однако выигрыш в снижении радиоактивности в лучшем случае достигает 10 раз [4].

Исследования трансмутации и выжигания МА в реакторах на быстрых нейтронах являются более перспективными. Спектр нейтронов в них позволяет осуществлять преимущественно деление, а не только поглощение с последующим накоплением старших изотопов, поскольку микросечения большинства актинидов имеют пороговый характер. Для сохранения преимуществ двух подходов размещения МА по активной зоне (гомогенный и гетерогенный) и частичного решения их недостатков было исследовано выжигание МА в гетерогенной ТВС реактора БН-1200. Для исследования было проведено варьирование содержания МА в воспроизводящих твэлах от 0 до 30%. В результате, была оценена эффективность выжигания: всего за один цикл возможно сократить более 33% объема, приходящегося на МА (или около 20% от объема для всех высоко активных отходов (далее ВАО)) реактора типа ВВЭР, а в зависимости от загружаемой доли один БН-1200 с гетерогенными ТВС может обслуживать от одного до восьми блоков ВВЭР [5].

Также в быстром спектре нейтронов рассматривалось выжигание МА в реакторе БРЕСТ-1200. Особенности реактора позволяют без каких-либо трудностей трансмутировать, т.е. сжигать за счет деления Ат, Ст, Np, наработанные тепловыми реакторами ВВЭР или РБМК. Повышая долю МА в топливе, можно увеличивать и объем трансмутации, однако при этом будут изменяться и характеристики реактора. Было исследовано, что при при кампании топлива 5 эф. лет будет задействовано, в качестве 5% добавки, 126.04 кг МА от ВВЭР-1000 (130 годовых наработок), и будет трансмутировано из них 96.6 кг. Остальное количество МА будет находиться постоянно в топливе [6].

Целью настоящей работы было поставлено исследование и качественная оценка влияния гомогенного размещения кюрия в ТВС реакторов БН-600 и ВВЭР-1200 на их нейтронно-физические характеристики, а также на теплофизические параметры, что является альтернативой прямому захоронению. Исследование основано на численном моделировании нейтронно-физических

процессов в среде SERPENT и градиента температур топливных элементов в ПО ANSYS. Варьируемым параметром является концентрация оксида кюрия ${\rm CmO_2}$ в топливе. Отслеживаемые характеристики:

- коэффициент размножения нейтронов в бесконечной среде;
- радиальное и аксиальное распределение температур по ячейке;
- спектр нейтронов.

1. МОДЕЛИРОВАНИЕ

Настоящее исследование целесообразно проводить на моделях ТВС реакторов ВВЭР-1200 (классический тип энергетического реактора в России) и БН-600, на котором ведутся испытания новейших видов топлива для инновационных реакторов. Данное решение позволило рассмотреть влияние кюрия на характеристики активной зоны в тепловом и быстром спектрах нейтронов соответственно.

1.1. IIK Serpent

Для оценки воздействия исследуемого элемента на нейтронно-физические характеристики (далее НФХ) реакторов были разработаны упрощенные расчётные модели ячейки и ТВС ВВЭР-1200 и БН-600 в ПК Serpent. Как видно из рисунков типовым для российских реакторов является формат размещения твэлов в ТВС, при этом для тепловых реакторов характерно размещение компенсирующих избыточную реактивность поглотителей (пэлов) внутри ТВС, в то время как поглотители в быстрых реакторах размещаются в виде отдельных кассет. Кроме того, в последних версиях ВВЭР отсутствует чехол [7], в то время как и для БН-800, и для БН-600 наличия чехла характерно [8].

1.1.1 BB3P-1200

Геометрические размеры модели: внешний диаметр твэла 9.1 мм, внешний/внутренний диаметр направляющих каналов 12,9/11 мм, размер ТВС «под ключ» 235.1 мм, высота топливного столба — 3730 мм. Расчетная модель (рис. 2) набрана из ячеек, имитирующих тепловыделяющие элементы (312 шт.), направляющих каналов (19 шт.).

Материал топлива — диоксид урана UO_2 с обогащением 4.95%, материал оболочек твэлов и направляющих каналов — циркониевый сплав 9110 (Zr+1% Nb), материал теплоносителя — лёгкая вода.

Для имитации бесконечной решетки активной зоны на границе гексагональной области теплоносителя было задано условие полного отражения нейтронов.

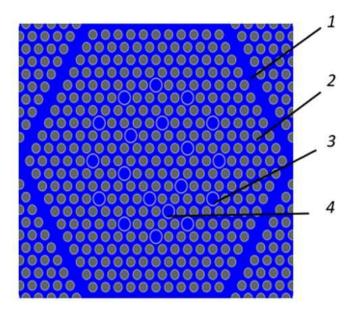


Рис. 2. Расчетная модель ВВЭР-1200. 1 — замедлитель/теплоноситель; 2 — ТВЭЛы (312 шт.); 3 — направляющие каналы (18 шт.); 4 — инструментальный канал

1.1.2 БН-600

Геометрические размеры модели: внешний диаметр твэла 6.8 мм, размер чехловой трубы «под ключ» 96 мм, толщина чехла 2 мм, высота топливного столба 738.1 мм, высота столбов зон воспроизводств 373.95 мм. Расчетная модель (рис. 3) набрана из ячеек, имитирующих тепловыделяющие элементы (127 шт.).

Материал топлива — диоксид урана UO_2 с обогащением 17%, материал оболочек твэлов и чехла — сплав UC68, материал теплоносителя — натрий.

Для имитации бесконечной решетки активной зоны на границе гексагональной области теплоносителя было так же задано условие полного отражения нейтронов.

1.2. ΠK Ansys

Для анализа влияния на теплофизические характеристики топливных элементов реакторов ВВЭР-1200 и БН-600 было получено численное решение уравнения теплопроводности реализовано в Ansys Fluid Flow CFX — инструменте вычислительной гидродинамики (СFD), который позволяет создавать области твердого тела и жидкости, для которых решаются уравнения переноса тепла [10]. Разработаны модели тепловыделяющей сборки (ТВС). Моделирование выполнено с учетом вышеупомянутых параметров ТВЭЛов и каналов, включая геометрию, состав материалов и условия энерговыделения.

19 тепловыделяющих элементов (ТВЭЛов) в модели выбрано исходя из принципа симметрии и миними-

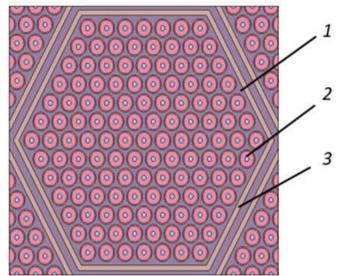


Рис. 3. Расчетная модель БН-600 1- теплоноситель; 2- ТВЭЛы (127 шт.); 3- чехловая труба

зации вычислительных затрат при сохранении точности результатов. В гексагональной структуре ТВС центральный ТВЭЛ окружен 18 элементами, что формирует характерный кластер, достаточный для корректного моделирования радиального распределения нейтронного потока и температурных полей. Такая конфигурация обеспечивает адекватный учет эффектов взаимовлияния ТВЭЛов без избыточной детализации, критичной для ресурсоемких расчетов.

1.2.1. BB3P-1200

Геометрические параметры модели аналогичны вышеуказанным для Serpent. Расчетная модель (рис. 4) набрана из ячеек, имитирующих тепловыделяющие элементы (19 шт.). Материал топлива — диоксид урана UO₂, материал оболочек твэлов и направляющих каналов — циркониевый сплав Э110 материал теплоносителя — лёгкая вода.

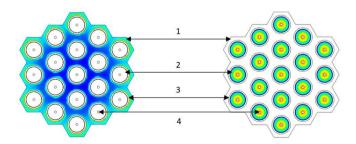


Рис. 4. Расчётная модель ВВЭР-1200: 1 — замедлитель/теплоноситель; 2 — ТВЭЛ (19 шт.); 3 — оболочка твэлов (19 шт.); 4 — гелиевый зазор(19шт)

1.2.2. БН-600

Геометрические параметры модели аналогичны вышеуказанным для Serpent.

Расчетная модель (рис. 5) набрана из ячеек, имитирующих тепловыделяющие элементы (19 шт.). Материал топлива — диоксид урана UO_2 , материал оболочек твэлов и направляющих каналов — сплав 4C68, материал теплоносителя — натрий.

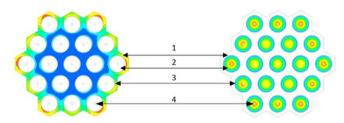


Рис. 5. Расчётная модель БН -600: 1 — теплоноситель; 2 — ТВЭЛ (19 шт.); 3 — оболочка твэлов (19 шт.); 4 — гелиевый зазор(19шт)

1.3. Условия расчёта

В целях исследования кюрий добавлялся в модели гомогенно, в качестве примеси CmO_2 к основному топливу. Доля данного соединения в ТВС БН-600 была варьирована от 1 до 20%, однако в модели ВВЭР-1200 использованы концентрации от 0.1%, что более актуально для теплового спектра. В расчётах было допущено, что плотность топливной таблетки не изменялась при добавлении кюрия. Изотопный состав CmO_2 ($^{242}Cm-0.02\%$, $^{243}Cm-1.65\%$, $^{244}Cm-98.33\%$) выбран в соответствии с составом ОЯТ ВВЭР-1000 после 5-летней выдержки [3].

РЕЗУЛЬТАТЫ

Экспериментальное исследование двух реакторных систем ВВЭР-1200 и БН-600 направлено на анализ ключевых параметров, определяющих их эффективность и безопасность. Особое внимание уделено коэффициенту размножения нейтронов $K_{\text{беск}}$, градиенту температур и энергетическому спектру нейтронов, так как эти показатели критически влияют на устойчивость цепной реакции, тепловое распределение и оптимизацию топливного цикла. Полученные данные, представленные в виде графиков и таблиц, включают:

- зависимость К_{беск} от процентного содержания кюрия, отражающую возможность работы реактора при запуске и во время эксплуатации;
- пространственное распределение температуры, выявляющее зоны риска термических напряжений;

• спектральные характеристики нейтронного потока, определяющие эффективность деления ядер.

2.1. BB9P-1200

Из графической зависимости (рис. 6) видно, что коэффициент размножения нейтронов значительно уменьшается с увеличением доли CmO_2 в топливе (при 20% концентрации кюрия $K_{\text{беск}}$ падает на 0.05). В результате сильного снижения $K_{\text{беск}}$ запуск реактора становится проблематичнее, следовательно целесообразно не превышать долю добавляемого кюрия в 1% для теплового реактора.

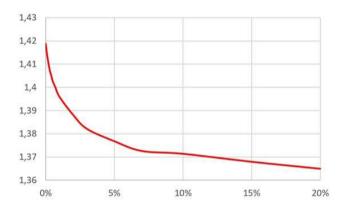


Рис. 6. Зависимость $K_{\mathfrak{I}}$ на начало кампании ВВЭР-1200 от процентного содержания кюрия

2.2. БН-600

Зависимость теплофизических характеристик от доли добавленного кюрия представлена в табл. 1.

Таблица 1. Теплофизические характеристики

Доля	Температура теплоносителя	Макс. температура
Cm, S	на выходе, К	в центре ТВЭЛа, Т
0	608	1600
0.1	600	1518
0.5	595	1310
1	591	1288
2	587	1259
5	580	1211
10	576	1169
15	572	1139
20	569	1096

При добавлении кюрия температура ячейки модели не превышала максимально допустимой

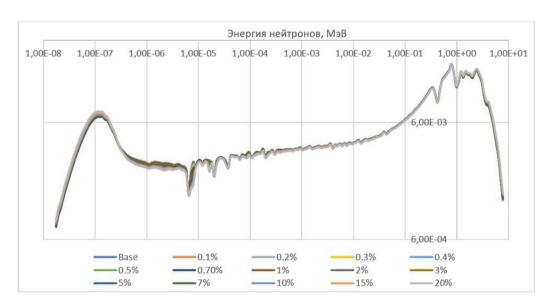


Рис. 7. Энергетическое распределение нейтронов

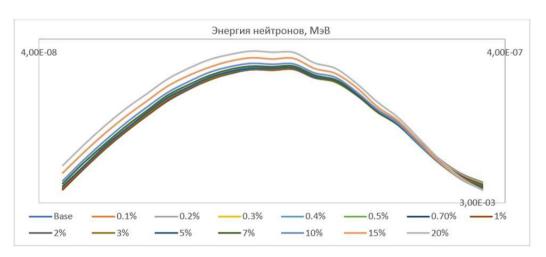


Рис. 8. Приближенная тепловая часть спектра

 $T_{\rm max}=1873.15{
m K}$ [9]. Из-за уменьшения энерговыделения и теплопроводности при добавлении данного элемента температура ТВЭЛа значительно падает, с такими значениями реактор не выйдет на стандартную мощность.

Из графического представления спектральных характеристик нейтронного потока (рис. 7) видно, что кюрий в большей степени влияет на долю тепловых нейтронов. При рассмотрении рабочей области реактора (рис. 8), было выявлено, что при малых долях кюрия (до 1%), количество тепловых нейтронов уменьшается в среднем на 1%, однако при дальнейшем добавлении CmO₂ (вплоть до 20%) повышается, достигая увеличения на 11.43%.

По сравнению с ВВЭР-1200, $K_{\rm беск}$ на начало кампании БН-600 при добавлении кюрия снижается менее активно (при 20% доли СтО2 падение $K_{\rm беск}$ составляет всего 0.03). Графическая зависимость представлена

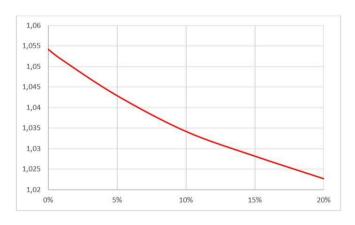


Рис. 9. Зависимость $K_{\text{беск}}$ на начало кампании БН-600 от процентного содержания кюрия

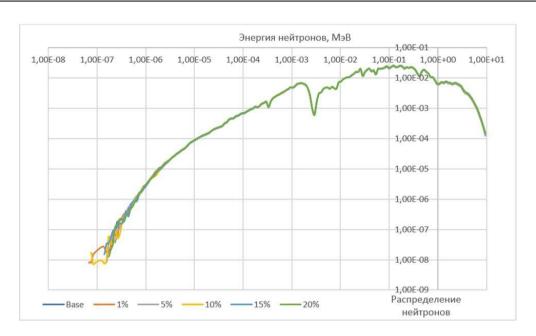


Рис. 10. Энергетическое распределение нейтронов

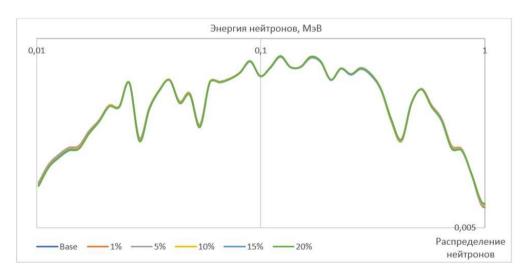


Рис. 11. Рабочая область спектра БН-600

на рис. 9. Незначительное уменьшение коэффициента размножения позволяет добавить в топливо более 1% кюрия, теряя в значении $K_{\text{беск}}$ от 0.01 до 0.03.

Экспериментальное исследование теплофизических свойств представлена в табл. 2. Аналогично реактору ВВЭР-1200 уменьшения энерговыделения и теплопроводности приводит к значительному уменьшению температур ТВЭЛа.

Расчеты показали, что влияние кюрия на энергетическое распределение нейтронов в БН-600 незначительно: флуктуации появляются только тепловой части спектра (рис. 10). Из графика рабочей области реактора (рис. 11) видно, что добавление $\rm CmO_2$ не изменяет долю быстрых нейтронов.

Таблица 2. Теплофизические характеристики

таолица 2. теплофизические характеристики		
Доля	Температура теплоносителя	Макс. температура
Cm, %	на выходе, К	в центре ТВЭЛа, Т
0	900	2380
1	894	2258
5	850	2018
10	803	1900
15	786	1848
20	757	1816

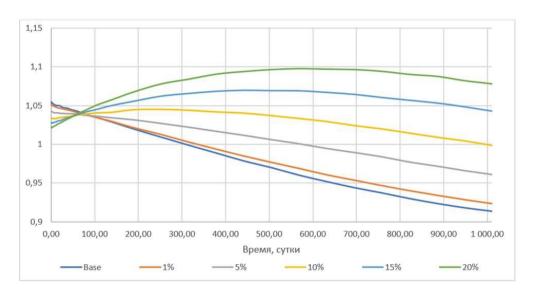


Рис. 12. Топливные кампании БН-600

Так как у БН-600 более перспективные показатели, была рассмотрена возможность продления его кампании с помощью добавления кюрия. Расчеты изменения $K_{\text{беск}}$ по суткам в процессе эксплуатации представлены на рис. 12.

Из графика видно, что добавление кюрия положительно сказывается на коэффициенте размножения. В процессе эксплуатации запас реактивности увеличивается, а в конце топливной кампании больше относительно стандартной модели, вплоть до 17.3.

ЗАКЛЮЧЕНИЕ

Из результатов расчетного моделирования можно сделать следующие выводы:

- 1. Добавление кюрия уменьшает коэффициент размножения нейтронов на начало кампании, что может значительно усложнить пуск реактора. Более сильное воздействие наблюдается на модели ВВЭР-1200, где минимальное значение $K_{\rm бесk}$ меньше стандартного на 3.85%. В случае с БН-600 максимальное падение составило 3%.
- 2. Доля CmO₂ в топливе положительно сказывается на рабочем спектре BBЭP-1200: пик увеличения плотности потока тепловых нейтронов составил 11.43%. На модели БН-600 воздействие кюрия на энергетическое распределение нейтронов ми-

- нимально и практически совпадает со стандартными значениями.
- 3. Добавление кюрия в топливо БН-600 позволяет продлить его топливную кампанию. Несмотря на падение $K_{\rm 9\phi}$ на старте, уже через 60-70 дней коэффициент достигает более высоких значений, по сравнению со стандартным. В результате максимальная разница $K_{\rm 6eck}$ на конец кампании составила 17.3%. Данная тенденция также наблюдается в других исследовательских работах, что подтверждает перспективность добавления кюрия к топливу быстрого реактора [11].
- 4. Гомогенное добавление элемента значительно снизило энерговыделение и вследствие понизило максимальную температуру ТВЭЛов. Теплофизический расчет показал уменьшение $\Delta T_{\rm max} = 564 K$ для модели реактора БН-600 и $\Delta T_{\rm max} = 504 K$ для модели реактора ВВЭР-1200.
- 5. Изменение температуры и теплопроводности ТВЭЛов оказало влияние на температуру теплоносителя: значительно для модели БН-600 ($-\Delta T=143K$) и менее значимо для модели реактора ВВЭР-1200 ($-\Delta T=39K$). Из этого и значительного уменьшения $\Delta T_{\rm max}$ следует недопустимость использования сборок с содержанием кюрия.

^[1] Терехова А.М., Хорасанов Г.Л. Оценка количеств изотопов кюрия и америция в ОЯТ реактора БН-600 //Будущее атомной энергетики. Atom Future 2017. 2018. С. 56-57.

^[2] Изотопы: свойства, получение, применение. / Б.М. Андреев, Д.Г. Арефьев, В.Ю. и др.. Том 2. Moscow, 2005. 728 с.

- [3] Зимин В.А., Столотнюк Я.Д., Семишин В.В. Исследование выгорания минорных актинидов в активной зоне быстрого реактора.
- [4] *Казанский Ю.А., Романов М.И.* // Известия высших учебных заведений. Ядерная энергетика. № 2. 140 (2014)
- [5] Котов Я.А., Невиница В.А., Фомиченко П.А. // Вопросы атомной науки и техники. Серия: Ядерно-реакторные константы. \mathbb{N} 2. 102 (2023).
- [6] *Ганев И.Х., Лопаткин А.В., Орлов В.В.* // Атомная энергия. **89**, № 5. 355 (2000).
- [7] Лазарева И.А., Парамонова И.Л. // Изв. СПбГЭТУ «ЛЭТИ». **15**, № 5/6. 15 (2022). doi: 10.32603/2071-8985-2022-15-5/6-15-21.
- [8] INTERNATIONAL ATOMIC ENERGY AGENCY, BN-600 Hybrid Core Benchmark Analyses, IAEA-TECDOC-1623, IAEA, Vienna (2010).
- [9] *Сиро Р.Ф., Зевякин А.С.* // Ученые записки физического ф-та Московского ун-та. № 4. 2440303 (2024).
- [10] Bergman Theodore L. Fundamentals of Heat and MassTransfer. Hoboken, New Jersey, John Wiley & Sons, Cop.,2011.
- [11] *Ширкова Д.Е., Дикова Т.С.* // Ученые записки физического ф-та Московского ун-та. № 4. (2023).

Estimation of Curium effect on neutron-physical characteristics of BN and VVER reactors under the homogeneous distribution

V.V. Khramkov^a, D.R. Aliev^b, A.A. Vorontsova, E.A. Gerdt, M.A. Popov, V.O. Skulkin

IATE NRNU MEPHI, Obninsk, 249039, Russia E-mail: ^avsevolod.200532@gmail.com, ^balievdv23@oiate.ru

The research aim is investigation of the curium affection on neutron-physical and thermophysical characteristics of VVER-1200 and BN-600. The fuel assemblies neutron-physical and thermophysical models have been created for the calculations to be made. Curium was added to the common fuel homogeneously in the proportions from 0,1 to 20% as CmO2 oxide. Characteristics considered are: neutron multiplication factor, neutron spectrum, temperature distribution. A stronger effect on the reactivity is observed of the VVER-1200 model – K_{eff} decreases by 3.85%. The maximum decrease of BN-600 neutron multiplication factor is 3%. Adding curium increases the neutron flux density of VVER-1200. Also curium does a considerable positive effect on the fast reactor's reactivity, that creates a possibility of using Cm as a fuel. The maximum fuel temperature decreases by 500° , when curium is added.

PACS: 89.30.Gg.

Keywords: curium, minor actinides, spent nuclear fuel, fast reactors, thermal reactors, neutron multiplication factor, temperature gradient, neutron specter, reactor campaign.

Received 03 June 2025.

Сведения об авторах

- 1. Храмков Всеволод Владимирович студент ИАТЭ НИЯУ МИФИ; e-mail: vsevolod.200532@gmail.com.
- 2. Алиев Давид Русланович студент ИАТЭ НИЯУ МИФИ; e-mail: alievdv23@oiate.ru.
- 3. Воронцова Александра Александровна студент ИАТЭ НИЯУ МИФИ; e-mail: paradisecitymake@gmail.com.
- 4. Гердт Эдуард Аликович студент ИАТЭ НИЯУ МИФИ; e-mail: gerdtea@mail.ru.
- 5. Попов Максим Александрович студент ИАТЭ НИЯУ МИФИ; e-mail: maksim.popovf@yandex.ru.
- 6. Вячеслав Скулкин Олегович сотрудник ИАТЭ НИЯУ МИФИ; e-mail: slava_skulkin@mail.ru.