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При проведении пуско-наладочных работ систем СВЧ питания электронных ускорителей, раз-
рабатываемых НИИЯФ МГУ и построенных на основе клистронов КИУ-168, КИУ-271 возникает
необходимость в проверке и калибровке тракта СВЧ низкого уровня мощности, который формирует
входной сигнал клистрона в форме прямоугольного импульса регулируемой скважности, заполнен-
ного высокочастотными колебаниями. Задача калибровки тракта СВЧ низкого уровня мощности
заключается в получении зависимости выходной импульсной мощности СВЧ от управляющего на-
пряжения p-I-n аттенюатора в виде графика и таблицы. Для этого был построен стенд диагностики
и калибровки. Затем была проведена автоматизация процесса калибровки с помощью программного
обеспечения, разработанного на основе Matlab.

PACS: 29.20.Ej УДК: 621.384.6, 621.3.072.
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ВВЕДЕНИЕ

НИИЯФ МГУ разрабатывает прототипы линейных
ускорителей для для медицины, дефектоскопии, сте-
рилизации и различных технологических процессов в
промышленности [1, 2]. Целью этой статьи являет-
ся описание стенда калибровки СВЧ тракта низко-
го уровня мощности импульсных линейных ускорите-
лей электронов, работающих в составе инспекционно-
досмотровых комплексов (ИДК) [3]. Принцип действия
комплексов на основе ускорителей основан на скани-
ровании контролируемых объектов узким пучком тор-
мозного излучения, направленного на детекторную ли-
нейку, с регистрацией полученного теневого изображе-
ния [4]. Использование клистрона в качестве источни-
ка СВЧ энергии для возбуждения электромагнитного
поля в ускоряющей структуре позволяет производить
переключение значения верхней границы спектра тор-
мозного излучения от импульса к импульсу [5].
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1. ТРАКТ СВЧ НИЗКОГО УРОВНЯ МОЩНОСТИ
ЛИНЕЙНОГО УСКОРИТЕЛЯ

Система СВЧ питания ускорителя построена на базе
многолучевого импульсного клистрона [6]. Клистрон
по принципу работы является усилителем и требует
наличия входного сигнала для функционирования. По
форме сигнал представляет собой прямоугольный им-
пульс мощности, заполненный высокочастотными ко-
лебаниями. Такой сигнал вырабатывает тракт СВЧ
низкого уровня мощности, блок-схема которого пред-
ставлена на рис. 1.

Высокостабильный синтезатор HMC833 (2) трак-
та низкого уровня мощности СВЧ, управляемый че-
рез интерфейс SPI [7], формирует сигнал мощностью
1 мВт на частоте 2856 МГц или 0,25 мВт на часто-
те 5712 МГц. Предварительный (3) и оконечный (6)
усилители позволяют обеспечить уровень сигнала воз-
буждения клистрона до 60 Вт импульсной мощности.
p-I-n аттенюатор (4) позволяет изменять выходной сиг-
нал тракта низкого уровня мощности СВЧ в диапазоне
30 дБ. Ферритовые вентили (5) служат для развязы-
вания по отраженной волне выходов усилителей. Ко-
эффициент ослабления ферритового вентиля в прямом
направлении — 0.1 дБ, в обратном — 20 дБ. Управля-
ющее напряжение p-I-n аттенюатора поступает с СВЧ
контроллера (1,b).
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Рис. 1. Схема тракта СВЧ низкого уровня мощности: 1,а — контроллер системы АПЧГ, 1,b — контроллер СВЧ панели,
2 — синтезатор HMC833, 3 — предварительный усилитель, 4 — p-I-n аттенюатор (0–30 дБ), 5 — ферритовый вентиль, 6 —
оконечный импульсный усилитель
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Рис. 2. Блок-схема стенда калибровки: 1 — автоматизированное рабочее место оператора; 2 — маршрутизатор; 3 — ваттметр
Я2М-66 с калориметрическим преобразователем; 4 — контроллер измерителя средней выходной мощности калибруемого
тракта СВЧ; 5 — калибруемый тракт СВЧ низкого уровня мощности; 6 — блок питания; 7 — осциллограф

2. СТЕНД КАЛИБРОВКИ ТРАКТА СВЧ НИЗКОГО
УРОВНЯ МОЩНОСТИ

Переменный аттенюатор (4) осуществляет варьиро-
вание выходной СВЧ мощности. Диапазон коэффици-
ента ослабления составляет –40 дБ при изменении
управляющего напряжения от 0 до 5 В. При прове-
дении пуско-наладочных работ требуется зависимость
импульсной мощности на выходе тракта от управля-

ющего напряжения аттенюатора, называемой калибро-
вочной кривой. Задача калибровки состоит в получе-
нии этой зависимости в виде таблицы и графика. Для
этого был сооружен стенд калибровки и диагностики,
схема которого представлена на рис. 2.

Стенд включает в себя автоматизированное рабо-
чее место оператора (АРМ) (1), которое представ-
ляет собой персональный компьютер установленны-
ми ПО Matlab Runtime, программy управления стен-
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да GUI_RF_Measurements и Microsoft Excel (по воз-
можности). Устройства стенда объединены в локаль-
ную сеть посредством маршрутизатора (2). Основным
средством измерения стенда является ваттметр погло-
щаемой мощности Я2М-66 с калориметрическим пре-
образователем (3). Сигнал постоянного напряжения,
величина которого пропорциональна измеряемой ватт-
метром (3) средней мощности, поступает на аналого-
вый вход контроллера стенда (4). Контроллер стенда
(4) содержит регулируемый по длительности и частоте
следования прямоугольных импульсов задающий гене-
ратор для синхронизации работы тракта СВЧ. Канал
A осциллографа (7) подключается к выходу калибруе-
мого тракта СВЧ (5) для контроля длительности оги-
бающей выходного сигнала. Канал B подключен к пла-
те синхронизации (4) для контроля сигнала запуска.
Лабораторный блок питания (6) обеспечивает питание
контроллера стенда и калибруемого тракта СВЧ посто-
янным напряжением +24 В.

3. КОНТРОЛЛЕР СТЕНДА

На основе предыдущих проектов была построен кон-
троллер стенда (4), далее именуемый «калибратор», ко-
торый связывает все компоненты в одну систему. Со-
стоит из инструментальной платы, платы синхрониза-
ции и платы микроконтроллера LPC1768. Внешний вид
калибратора представлен на рис. 3.

Инструментальная плата калибратора (4) включа-
ет в себя прецизионный усилитель постоянного то-
ка, предназначенный для согласования измерительного
выхода ваттметра (3) и входа АЦП платы микрокон-
троллера.

Плата синхронизации формирует импульсы запус-
ка в виде двух дифференциальных сигналов напря-
жения — сигнала энергии и сигнала триггера — из
импульсов ШИМ, приходящих с платы микроконтрол-
лера. Сигнал запуска поступает на калибруемый тракт
СВЧ по интерфейсу RS422 [8]. Также плата содержит
коаксиальный разъем для передачи сигнала триггера
на осциллограф (7).

Плата микроконтроллера LPC1768 содержит модуль
интерфейса Ethernet для обмена данными с АРМ, порт
для тестирования и прошивки, а также осуществля-
ет разводку питания на две соседние платы. Микро-
контроллер содержит систему регистров, управляющих
параметрами импульса запуска: частотой повторения,
длительностью импульсов, уровнем энергии и др.

4. ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ СТЕНДА

Приложение для стенда калибровки
GUI_RF_Measurements построено в среде Matlab [9]
и работает с помощью его сервиса Matlab Runtime,
который поддерживает работу отдельных приложений
и доступен для Windows и Linux. Передача данных

a

б

Рис. 3. 3D модель контроллера стенда калибровки (а) и его
внешний вид после изготовления (б)

между компьютером и контроллером стенда происхо-
дит посредством протокола ModBus TCP/IP [10].

Основная часть программного кода – функции
управления регистрами протокола ModBus TCP/IP.
При вызове функции 16-ти битного чтения регистра
вывода создается сообщение по формату, определенно-
му протоколом, и отправляется на ведомое устройство
в шестнадцатиричном виде. При появлении данных в
приемном буфере считывается ответ. В результате об-
работки ответа функция выдает содержащееся в реги-
стре значение. В случае ошибки передачи осуществля-
ется попытка повторного подключения.

Программа содержит несколько модулей, которые
оформлены в виде вкладок: Connection (установка
и разрыв TCP/IP-соединения), Wattmeter (калибров-
ка значений ваттметра), PIN (тестовая запись управ-
ляющего напряжения аттенюатора), Samples (запуск
процесса калибровки), Parameters (параметры перево-
да мощности и соединения с контроллером тракта).
Интерфейс вкладки Connection представлен на рис. 4.

В цикле алгоритма калибровки калибратор задает
управляющее напряжение p-I-n аттенюатора тракта
СВЧ U и передает значения напряжения выходного
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Рис. 4. Интерфейс вкладки Connection программы
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Рис. 5. Калибровочная кривая тракта СВЧ с различными
временными интервалами измерения одной точкиs

усилителя ваттметра Uc на АРМ (1). Выходная им-
пульсная мощность Ppulsed калибруемого тракта СВЧ
связана с Uc выражением (1):

Ppulsed(мВт) =
bc + ac · Uc(мВ)

τRF · frep
, (1)

где τRF — длительность огибающей импульса СВЧ,
frep — частота повторения импульсов; bc и ac —
калибровочные коэффициенты. Запись производится
в файл формата «xlsx» или «dat». Для каждого
значения управляющего напряжения U записывают
Ppulsed с погрешностью (при множественном изме-
рении) и Uc. При записи в файл Excel активиру-
ется макрос-графопостроитель для создания графика

калибровочной кривой. Пример графика показан на
рис. 5.

ЗАКЛЮЧЕНИЕ

На момент написания статьи стенд калибровки пол-
ностью собран и запущен в эксплуатацию. Для при-
ложения обработано большинство ошибок, связанных
с TCP/IP соединением и записью данных в файл. Пока
нерешенной остается проблема с длительным ожида-
нием при запуске приложения, которое связано с осо-
бенностями работы Matlab Runtime. Также проблемой
является большой объем установочной программы.
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The test set-up of Electron Linac Low-level RF system
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During the commissioning of RF power supply systems for electron accelerators developed by the SINP MSU and
built on the basis of KIU-168, KIU-271 klystrons, there is a need to check and calibrate the low-level RF system,
which generates the input signal of the klystron in the form of a rectangular pulse of adjustable duty cycle, filled with
high-frequency oscillations. The task of calibrating the low-level RF system is to obtain the dependence of the output
pulse power on the control voltage of the variable attenuator in the form of a graph and a table. For this purpose, a
test set-up was built. Then the calibration process was automated using Matlab-based software.
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