# Использование состояний «кота Шредингера» для детектирования фиксированного фазового сдвига с использованием фотоноразрешающих детекторов с конечной квантовой эффективностью

В. Л. Горшенин<sup>1,2\*</sup> <sup>1</sup>Российский квантовый центр, Инновационный центр Сколково Россия, 121205, Москва, Большой бульвар, 30 стр. 1 <sup>2</sup>Московский физико-технический институт Россия, 141701, Долгопрудный, Институтский переулок, 9 (Поступила в редакцию 13.05.2024; подписана в печать 05.07.2024)

Одной из стандартных задач интерферометрии является бинарное (да/нет) детектирование заданного фазового сдвига. Ее преимуществом, по сравнению с задачей измерения неизвестного фазового сдвига, является наличие априорной информации, что позволяет получить более высокую чувствительность. Весьма привлекательным, в этом случае, является использование существенно неклассических негауссовских состояний зондирующего света.

В данной работе исследована интерферометрическая схема, использующая негауссовские состояния типа «кот Шредингера» (КШ) схему, с учетом влияния неидеальной квантовой эффективности фотодетектора. Выполнены оценки для реалистичных значений квантовой эффективности и практически достижимых значений амплитуд КШ.

РАСS: 2.50.Lc, 42.62.Eh, 42.87.Bg УДК: 530.145.82, 535.14. Ключевые слова: квантовая оптика, интерферометрия, состояние кота Шредингера.

# введение

На самом фундаментальном уровне, чувствительность интерферометрических оптических измерений фазы ограничивается квантовыми флуктуациями света в них и, следовательно, зависит от его квантового состояния (см. обзоры [1, 2] и цитированную в них литературу). В случае когерентных квантовых состояний, генерируемых стабилизированными лазерами, фазовая чувствительность соответствует пределу дробового шума (Shot Noise Limit, SNL):

$$\Delta\phi_{\rm SNL} = \frac{1}{2\sqrt{N}},\tag{1}$$

где N — среднее число фотонов, использованных для измерения.

В работе [3] было показано, что более высокую чувствительность при заданном N можно получить, используя т.н. сжатые квантовые состояния света. В случае умеренного сжатия,  $e^{2r} \ll N$ , где r – логарифмический фактор сжатия, чувствительность можно улучшить в  $e^r$  по сравнению с SNL:

$$\Delta\phi_{\rm SQZ} = \frac{e^{-r}}{2\sqrt{N}},\tag{2}$$

Этот метод в настоящее время успешно применяется в километрового масштаба интерферометрах лазерных детекторов гравитационных волн [4].

Как когерентные, так и сжатые состояния относятся к классу гауссовских состояний, то есть их функции

Вигнера [5] имеют форму двумерного гауссовского колокола. В последние годы заметный интерес привлекает возможность использования в интерферометрии экзотических негауссовских состояний [6–14]. В частности, в работах [13, 14], была теоретически исследована возможность использования состояний типа «кот Шредингера» (КШ). Однако в работах [15, 16] было показано, что для измерения априори неизвестной фазы, негауссовские состояний не дают преимуществ по сравнению с обычными гауссовскими.

Однако возможна и другая постановка задачи, а именно, различение двух возможных событий [17], и в частности, бинарное(да/нет) обнаружение известного фазового сдвига. Этот подход может быть использован, например, для различения двух близких коэффициентов преломления.

В этом случае негауссовские состояния могут обеспечить лучшую чувствительность, чем гауссовские, так как они могут быть ортогональны друг другу и поэтому в принципе могут быть безошибочно различены [17]. В работе [18] эта концепция была продемонстрирована экспериментально для задачи обнаружения силового воздействия на ион в ловушке, поступательная степень свободы которого была приготовлена в (негауссовском) одноквантовом состоянии.

В нашей предыдущей работе [19] был предложен метод детектирования фазового сдвига, использующий состояния КШ и счетный детектор фотонов. Было показано, что при использовании идеального детектора, можно получить нулевую вероятность ложных срабатываний при ненулевой, но малой вероятности пропуска сигнала.

В настоящей работе исследуется практическая реализуемость предложенного метода с учетом того, что

<sup>\*</sup> valentine.gorshenin@yandex.ru



Рис. 1. Оптические схемы асимметричного (а) и антисимметричного (б) интерферометра Маха-Цандера. «Светлые» порты обозначены индексом «1», «темные» порты — индексом «2».

квантовая эффективность реальных счетных детекторов фотонов ( $\eta$ ) не равна единице. Статья организована следующим образом. В разделе 1 описан протокол детектирования заданного фазового сдвига в интерферометре Маха–Цандера, предложенный в [19] и используемый в настоящей работе. В разделе 2 рассчитана чувствительность данного метода с учетом неидеальной квантовой эффективности фотодетектора. В разделе 2 обсуждается практическая реализуемость рассматриваемого метода детектирования фазового сдвига.

### 1. ПРОТОКОЛ ИЗМЕРЕНИЯ

В работе [19] были рассмотрены две наиболее экспериментально важные конфигурации интерферометра Маха-Цандера (см. обзор [2]) — асимметричная (см. рис. 1, *a*) и антисимметричная (см. рис. 1, *б*). В первой, концептуально более простой, фазовый сдвиг  $\phi$  вносится только в одно плечо, а коэффициенты отражения и пропускания светоделителей существенно отличаются,  $(R \gg T)$ . Во второй конфигурации фазовые сдвиги  $\phi$  и  $-\phi$  вносятся асимметрично в оба плеча и используются сбалансированные светоделители  $R = T = 1/\sqrt{2}$ . Эта конфигурация более толерантна к разнообразным техническим шумам и дрейфам.

В обоих вариантах предполагается яркое когерентное состояние на «светлом» входном порту и некоторое квантовое состояние  $|\Psi_0\rangle$  на темном входном порту. Предполагается, что интерферометр настроен так, что при отсутствии фазового сдвига ( $\phi = 0$ ) выходные состояния совпадают с входными. В этом случае, в линейном по малым сдвигам фаз и по квантовым флуктуациям приближении, поле на «светлом» выходном порту не несет информации о фазе. Квантовое состояние поля на «темном» выходном порту может быть

представлено в виде:

$$|\Psi_{\delta}\rangle = \hat{\mathcal{D}}(\delta) |\Psi_{0}\rangle , \qquad (3)$$

где

$$\hat{\mathcal{D}}(\delta) = e^{i\delta(\hat{a} + \hat{a}^{\dagger})} \tag{4}$$

— оператор сдвига,  $\hat{a}$  и  $\hat{a}^{\dagger}$  — операторы уничтожения и рождения,

$$\delta = \sqrt{N}\phi \tag{5}$$

— параметр сдвига, и  $\sqrt{N}$  — число фотонов на фазосдвигающем объекте (объектах).

Предположим теперь, что состояние  $|\Psi_0\rangle$  является состоянием КШ:

$$|\Psi_0\rangle = \frac{1}{\sqrt{K}} (|\alpha\rangle + |-\alpha\rangle), \qquad (6)$$

где  $|\alpha\rangle$ ,  $|-\alpha\rangle$  — когерентные состояния и

$$K = 2(1 + e^{-2|\alpha|^2}) \tag{7}$$

- нормировочный фактор.

В работе [20] было показано, что состояние КШ и сдвинутое состояние КШ при определенных значениях параметра сдвига становятся ортогональными друг другую. В частности, это относится к состояниям  $|\Psi_0\rangle$ и  $|\Psi_\delta\rangle$  в формуле (3). Тем самым, в принципе, эти состояния могут быть безошибочно различены. С учетом того, что  $|\Psi_0\rangle$  является выходным состоянием интерферометра при  $\phi = 0$ , отсюда следует, что рассмотренная схема позволяет безошибочно детектировать фазовые сдвиги, при которых состояния  $|\Psi_0\rangle$  и  $|\Psi_\delta\rangle$  ортогональны. Как было показано в [19], параметр сдвига ( $\delta$ ) задается соотношением:

$$\delta_k = \frac{\arccos(-e^{-2\alpha^2}) + 2\pi k}{2\alpha},\tag{8}$$

где k — целое число. Очевидно, что наилучшая чувствительность достигается при k = 0. Соответствующий фазовый сдвиг равен:

$$\phi_0 = \frac{\arccos(-e^{-2\alpha^2})}{2\alpha\sqrt{N}} \,. \tag{9}$$

Как было показано в монографии [17], безошибочное различение двух ортогональных состояний  $|\Psi_0\rangle$  и  $|\Psi_\delta\rangle$  требует использования процедуры измерения, описываемой положительной операторной вероятностной мерой (ПОВМ)

$$\{ |\Psi_0\rangle \langle \Psi_0|, |\Psi_\delta\rangle \langle \Psi_\delta| \}.$$
 (10)

Однако реализация такой процедуры для случая (6) неизвестна.



Рис. 2. Зависимость четности сдвинутого состояния КШ от сдвига  $\delta$  (см. формулу (11)).

В работе [19] был предложен метод детектирования, дающий несколько худший, но все равно очень интересный результат. В его основе лежит измерение четности  $\hat{\Pi} = (-1)^{\hat{a}^{\dagger}\hat{a}}$  на выходе интерферометра при помощи разрешающего число квантов фотодетектора.

Как показано в [19], зависимость средней четности  $P_{\delta} = \langle \Psi_{\delta} | \Pi | \Psi_{\delta} \rangle$  от сдвига  $\delta$  имеет следующий вид:

$$P_{\delta} = p_{\text{even}} - p_{\text{odd}} = \langle \Psi_{\delta} | \,\hat{\Pi} \, | \Psi_{\delta} \rangle = e^{-2\delta^2} \frac{\cos 4\alpha \delta + e^{-2\alpha^2}}{1 + e^{-2\alpha^2}},$$
(11)

где  $p_{\rm even}$  и  $p_{\rm odd}$  — соответственно вероятности получить четное и нечетное число фотонов в результате измерения. График функции  $P_{\delta}$  для двух характерных значений параметра  $\alpha$  приведен на рис. 2.

При  $\delta = 0$  состояние КШ  $|\Psi_0\rangle$  имеет четную статистику:

$$p_{\text{even}} = 1 \implies P_0 = 1. \tag{12}$$

С ростом  $\delta,$  средняя четность уменьшается, достигая минимума  $P_{\rm min}<0$  при некотором  $\delta=\delta_{\rm opt},$  примерно равном

$$\delta_{\rm opt} \approx \frac{\pi}{4\alpha} \frac{1}{1 + \frac{1}{4\alpha^2}} \,. \tag{13}$$

В [19] была предложена следующая стратегия обнаружения. Пусть точно известно, что сдвиг фаз  $\phi$  равен либо нулю, либо  $\phi_{opt} = \delta_{opt}/\sqrt{N}$ , см. формулу (5). Тогда при измерении четного числа фотонов принимается решение, что  $\phi = 0$ , а нечетного – что  $\phi = \phi_{opt}$ .

Очевидно, что в этом случае в силу (12) вероятность ложного срабатывания  $p_{\rm f.p.}$  (было  $\phi = \phi_{\phi_{\rm opt}}$ , принято решение, что  $\phi = \phi_0$ ) равна нулю. Однако в силу того, что минимум четности (11) не достигает –1, вероятность пропуска сигнала (было  $\phi = \phi_0$ , принято решение, что  $\phi = \phi_{\rm opt}$ ) остается ненулевой:

$$p_{\rm f.n.} = p_{\rm even}|_{min} = \frac{1 + P_{\rm min}}{2}$$
. (14)

#### 2. УЧЕТ ЭФФЕКТИВНОСТИ ФОТОДЕТЕКТОРА

Используя формулы (3), (4) и (6), легко показать, что

$$\begin{split} |\Psi_{\delta}\rangle &= \frac{1}{\sqrt{K}} (e^{i\delta\alpha} |\alpha + i\delta\rangle + e^{-i\delta\alpha} |-\alpha + i\delta\rangle) \\ &= \frac{1}{\sqrt{K}} e^{-(\alpha^2 + \delta^2)/2} \times \\ &\times \sum_{n}^{\infty} \frac{1}{\sqrt{n!}} \left[ e^{i\alpha\delta} (\alpha + i\delta)^n + e^{-i\alpha\delta} (-\alpha + i\delta)^n \right] |n\rangle \;. \end{split}$$
(15)

Распределение вероятностей по числу квантов для этого состояния имеет вид:

$$p_n = |\langle n | \Psi_{\delta} \rangle|^2 = \frac{2e^{-(\alpha^2 + \beta^2)}}{Kn!} \times \left( (\alpha^2 + \delta^2)^n + \Re\{e^{2i\alpha\delta}[-(\alpha + i\delta)^2]^n\} \right).$$
(16)

Используя модель эффективного светоделителя [21], можно показать, что для фотодетектора с квантовой эффективностью  $\eta$  условная вероятность зарегистрировать n фотонов при N фотонах на входе задается биноминальным распределением вида

$$p(n|N) = \frac{N!}{n!(N-n)!} (1-\eta)^{N-n} \eta^n \,. \tag{17}$$

Для входного распределения (16) вероятность зарегистрировать n фотонов, соответственно, будет равна:

$$p_n^{(\eta)} = \sum_{N=n}^{\infty} P(n|N)p_N$$
 (18)



Рис. 3. (Слева) Четность  $P_{\delta}^{(\eta)}$  при  $\alpha = 1.5$ . (Справа) Четность  $P_{\delta}^{(\eta)}$  при  $\alpha = 3$  см. формулу (24). Зависимости представлены для различных квантовых эффективностей

Далее используем следующую лемму (X – произвольное число):

$$\sum_{N=n}^{\infty} P(n|N) \frac{X^N}{N!} = \frac{(\eta X)^n}{n!} \sum_{m=0}^{\infty} \frac{((1-\eta)X)^m}{m!} = \frac{(\eta X)^n}{n!} e^{(1-\eta)X} .$$
 (19)

В итоге получим, что

$$p_{n}^{(\eta)} = \frac{2e^{-\eta(\alpha^{2}+\delta^{2})}}{Kn!} \times \left(\eta^{n}(\alpha^{2}+\delta^{2})^{n}+e^{-2(1-\eta)\alpha^{2}}\Re\left[e^{2i\alpha\delta\eta}\left(-(\alpha+i\delta)^{2}\right)^{n}\eta^{n}\right]\right).$$
(20)

Вероятности получить в результате измерения четное и нечетное число фотонов равны, соответственно:

$$p_{\text{even}}^{(\eta)} = \sum_{n=0}^{\infty} p_{2n}, \quad p_{\text{odd}}^{(\eta)} = \sum_{n=0}^{\infty} p_{2n+1}.$$
 (21)

Используя формулы суммирования:

$$\cosh x = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}, \quad \sinh x = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}, \quad (22)$$

можно показать, что:

$$p_{\text{even}}^{(\eta)} = \frac{1 + P_{\delta}^{(\eta)}}{2}, \quad p_{\text{odd}}^{(\eta)} = \frac{1 - P_{\delta}^{(\eta)}}{2}, \quad (23)$$

где

$$P_{\delta}^{(\eta)} = e^{-2\eta\delta^2} \frac{e^{-(1-\eta)\alpha^2}\cos 4\alpha\delta + e^{-2\eta\alpha^2}}{1+e^{-2\alpha^2}}$$
(24)

— средняя четность с учетом потерь, сравните с формулой (11). Зависимость четности при разумных квантовых эффективностях для  $\alpha = 1.5$  и  $\alpha = 3$  представлены на рис. 3.

Пусть используется та же стратегия обнаружения, что и в работе [19], то есть вероятность пропуска сигнала равна вероятности измерения четных фотонов при  $\delta \neq 0$ , а вероятность ложного срабатывания равна вероятности измерения нечетных фотонов при  $\delta = 0$ . Последняя теперь отлична от нуля в силу возможности потерь фотонов из-за диссипации:

$$p_{\rm f.p.}^{(\eta)} = \frac{1 - P_0^{(\eta)}}{2} = \frac{1}{K} (1 - e^{-2(1 - \eta)\alpha^2}) (1 - e^{-2\eta\alpha^2}) .$$
(25)

На рис. 4 (слева) представлена зависимость вероятности пропуска сигнала от амплитуды состояния КШ при различных значениях квантовой эффективности  $\eta$ . Величина  $\delta$  выбирается для достижения минимума ошибки пропуска сигнала. На рис. 4 (справа) представлена зависимость вероятности ложного срабатывания от амплитуды состояния КШ также соответственно при различных квантовых эффективностях  $\eta$ .

# ЗАКЛЮЧЕНИЕ

Как следует из полученных нами результатов, неидеальность квантовой эффективности детектирования оказывает существенное влияние на чувствительность рассмотренной нами схемы. В частности, в отличие от случая идеального детектора, помимо вероятности пропуска сигнала, становится отличной от нуля также вероятность ложного срабатывания, причем последняя довольно быстро растет с ростом амплитуды КШ  $\alpha$ .

Следует подчеркнуть, однако, что развитие счетных детекторов фотонов сегодня достигло значительных



Рис. 4. (Слева) Вероятность пропуска сигнала  $p_{ms}$  для различных квантовых эффективностей  $\eta$  счетных детекторов фотонов, см.формулы (23), (24). (Справа) Вероятность ложного срабатывания  $p_{fd}$  для различных квантовых эффективностей  $\eta$  счетных детекторов фотонов, см. (25))

успехов. Один из типов, обеспечивающих наибольшую квантовую эффективность – криогенные счетные детекторы фотонов. Такие детекторы демонстрируют квантовую эффективность до 95% [22–24]. Основным ограничивающим фактором квантовой эффективности этого типа детекторов являются потери на вводе. Однако недавно была предложена схема ввода излучения в счетный детектор с эффективностью ввода до 98% [25].

Из рис. 4 видно, что оптимальный баланс ошибок пропуска сигнала и ложного срабатывания обеспечивается при относительно небольших значениях амплитуды КШ,  $\alpha \sim 2$ . Отметим, что первое успешное при-

готовление состояния КШ с амплитудой  $\alpha^2 \approx 0.8$  было успешно выполнено в 2006 году [26]. В более поздних работах экспериментально были достигнуты амплитуды состояния КШ  $\alpha^2 \sim 3$ , см. статьи [27, 28].

Данная работа была поддержана грантом № 23-1-1-39-1 Фонда развития теоретической «БАЗИС». физики и математики Автор выражает благодарность своему научному руководителю Ф. Я. Халили. Также автор благодарит Б. Н. Нугманова, Д. И. Салыкину и С. Н. Балыбина за полезные замечания и дискуссии.

- [1] Andersen U.L., Glöckl O., Gehring T., Leuchs G. // Quantum Information: From Foundations to Quantum Technology Applications 2019. Part 8. Sec. 35. Wiley-VCH Verlag GmbH & Co. KGaA
- [2] Salykina D., Khalili F. // Symmetry. **15**, N 3. 774. (2023).
- [3] Caves C.M. // Phys. Rev. D. 23, N 8. 1693. (1981).
- [4] Dwyer S.E., Mansell G.L., McCuller L. // Galaxies. 10,
- N 2. 46. (2022). [5] *Schleich W.P.* // Quantum optics in phase space. John Wiley & Sons. 2011.
- [6] Holland M.J., Burnett K. // Phys. Rev. Lett. **71**, N 9. 1355. (1993).
- [7] Lee H., Kok P., Dowling J.P. // Journal of Modern Optics.
   49 N 14-15. 2325. (2002).
- [8] Campos R.A., Gerry C.C., Benmoussa A. // Phys. Rev. A.
   68, N 2. 023810. (2003).
- [9] Berry D.W., Higgins B.L., Bartlett S.D. et al. // Phys.l Rev. A. 80, N 5. 052114. (2002).
- [10] Pezzé L., Smerzi A. // Phys. Rev. Lett. 110, N16. 163604. (2013).

- [11] Daryanoos, S., Slussarenk, S., Berry D.W. et al. // Nature communications. 9, N 1. 4606. (2018).
- [12] Perarnau-Llobet M., González-Tudela A., Cirac J.I. // Quantum Science and Technology. 5, N 2. 025003. (2020).
- [13] Shukla G., Mishra K.M., Pandey A.K. et al. // Optical and Quantum Electronics. 55, N 5. 460. (2023).
- [14] Shukla G., Yadav D., Sharma P. et al. // Physics Open. 18, 100200. (2024).
- [15] Lang M.D., Caves C.M. // Phys. Rev. Lett. 111, N17. 173601. (2023).
- [16] Lang M.D., Caves C.M. // Phys. Rev. A. 90, N 2. 025802. (2014).
- [17] *Helstrom C.W.* // Quantum detection and estimation theory. Academic Press. 1976.
- [18] Wolf F., Shi Ch., Heip J.C. et al. // Nature communications. 10, N 1. 2929. (2019).
- [19] Gorshenin V.L. // Laser Phys. Lett. 21, N 6. 065201. (2024).
- [20] Singh R., Teretenkov A.E. // Physics Open. 18, 100198. (2024).
- [21] Leonhardt U., Paul H. // Phys. Rev. A. 48, N 6. 4598.

(1993).

- [22] Gerrits T., Calkins B., Tomlin N. et al. // Optics Express. (2012). 20, N 21. 23798
- [23] Stasi L., Gras G., Berrazouane R. et al. // Phys. Rev. Appl. 19, N 6. 064041. (2023).
- [24] Adriana E.L., Aaron J.M., Sae W.N. // Optics express. 16, N 5. 3032 (2008).
- [25] Fukuda D. // Optics express. 19, N 2. 870 (2011).
- [26] Ourjoumtsev A., Tualle-Brouri R., Laurat J. et al. // Science. 312, N 5770. 83 (2006).
- [27] Huang, Kehui et al. // Phys. Rev. Lett. 115, N2. 023602. (2015).
- [28] Sychev D.V., Ulanov A.E., Pushkina A.A. et al. // Nature Photonics. 11, N 6. 379 (2017).

# Using Schrödinger cat state for detection of a given phase shift using photon-number resolving detector with finite quantum efficiency

V. L. Gorshenin<sup>1,2</sup>

<sup>1</sup>Russian Quantum Center. Skolkovo, 143025, Russia <sup>2</sup>Moscow Institute of Physics and Technology. Dolgoprudny, 141700, Russia E-mail: valentine.gorshenin@yandex.ru

One of the standard tasks of interferometry is binary (yes/no) detection of a given phase shift. Its advantage over the task of measuring an unknown phase shift is the availability of a priori information, which allows for higher sensitivity. The use of non-classical non-Gaussian states of the probing light looks very promising in this case. In this work, we consider an interferometric scheme using the Schrödinger cat (SC) non-Gaussian states, taking into account the non-ideal quantum efficiency of the photodetector. We calculate the achievable sensitivity, assuming the realistic values of quantum efficiency and achievable values of the SC state amplitudes.

PACS: 42.50.Lc, 42.62.Eh, 42.87.Bg. *Keywords*: quantum optics, interferometry, Schrodinger cat state. *Received 2024*.

# Сведения об авторе

Горшенин Валентин Леонидович, студент 6 курса; e-mail: valentine.gorshenin@yandex.ru.