Множественная генерация образов в оптической модели детектора СФЕРА-3

В.А. Иванов, В.И. Галкин

Московский государственный университет имени М.В. Ломоносова, физический факультет, кафедра физики космоса Россия, 119991, Москва, Ленинские горы, д. 1, стр. 2 (Поступила в редакцию 15.11.2023; подписана в печать 04.12.2023)

Изучение происхождения и распространения космических лучей в диапазоне от 1 до 1000 ПэВ имеет важное значение. Разрабатывается новая установка СФЕРА-3 с более высокой светосилой и лучшим оптическим разрешением на основе опыта, полученного при эксплуатации аэростатной установки СФЕРА-2. В данной работе представлен моделирующий комплекс для генерации образов черенковского света на детекторной мозаике телескопа СФЕРА-3.

PACS: 96.50.sb, 96.50.sd УДК: 524.1

Ключевые слова: ШАЛ, моделирование, черенковский детектор, автоматизация.

ВВЕДЕНИЕ

Задача регистрации первичного космического излучения (ПКИ) активно решается на протяжении многих десятилетий. Полученные в последнее время результаты [1] указывают на то, что основная часть событий первичных космических лучей (ПКЛ) с энергией 1–1000 ПэВ может иметь экстрагалактическую природу. Таким образом, состав ПКЛ в данном диапазоне может иметь решающее значение для построения модели перехода от галактических космических лучей к экстрагалактическим. Понимание физики этого процесса необходимо для описания процессов ускорения и распространения космических лучей.

Метод детектирования, отраженного от снежной поверхности черенковского света, предложенный А.Е. Чудаковым [2], лёг в основу серии экспериментов СФЕРА.

Проведение чувствительных к ядерному составу экспериментов является важной задачей современной астрофизики. На данный момент научная группа проекта СФЕРА [3] занимается активной разработкой следующего детектора серии – детектора СФЕРА-3. Решения, которые будут применены в СФЕРЕ-3 [4], позволят получить более детальное представление о массе ПКЛ в диапазоне энергий от 1 до 1000 ПэВ.

Основной информационной единицей является образ на мозаике, так как благодаря ему получается вся основная информация о событии. Возникает необходимость получения как можно более точного образа события на мозаике детектора. Таким образом возникает задача генерации достоверных образов на мозаике в терминах модели планируемого детектора. Которая решается с помощью многошагового моделирования с помощью программного пакета CORSIKA [5], программного пакета GEANT4 [6] и приложения на языке FORTRAN.

1. ДЕТЕКТОР СФЕРА-3

В детекторе СФЕРА-3 используется модифицированная оптическая система Шмидта с линзовым корректором для исправления сферической аберрации. Конструкция рамы из алюминиевых трубок диаметром 20 мм соединяет все элементы оптической системы, включая зеркало, бленду, линзу корректора сферической аберрации и мозаику кремниевых фотоумножителей. Измерительная аппаратура располагается в затененной области усеченного конуса.

Планируется, что детектор СФЕРА-3 будет иметь эффективную площадь входного окна диафрагмы не менее $1\,$ м $2\,$ и оптическое разрешение не хуже $2000\,$ пикселей. Поле зрения должно быть не менее $\pm 20^{\circ}$. Окончательные характеристики будут определены после оптимизации параметров оптической системы и моделирования.

В качестве предварительного варианта оптической конструкции детектора рассматривается измененная оптическая схема Шмидта с асферическим зеркалом и пластиной-корректором. Входное окно телескопа закрыто пластиной-корректором из акрила толщиной от 5 до 30 мм и диаметром 1700 мм. Между зеркалом и корректором располагается светочувствительная часть детектора — мозаика SiPM [7] с диаметром чувствительной части 660 мм и полным диаметром 680 мм, а также блок электроники. С учетом затенения мозаикой и блоком электроники эффективная площадь входного окна составляет 1.9 м2.

2. МОДЕЛИРОВАНИЕ ДЕТЕКТОРА СФЕРА-3

Важным шагом при работе над решением поставленной задачи являлось создание новой достоверной модели детектора СФЕРА-3. Ключевыми изменения в геометрии детектора по сравнению с прошлой версией стали:

асферическая линза корректор на входном отверстии из акрила;

^{*} Ivanov.va18@physics.msu.ru

- 2. асферическое зеркало;
- 3. детекторная решетка из SIPM со светосборниками

Оптическая модель детектора с этими нововведениями выглядит следующим образом (см. рис. 1):

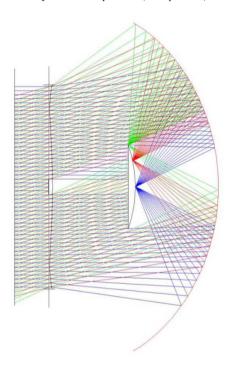


Рис. 1. Оптическая модель детектора СФЕРА-3 с асферическим зеркалом и линзой корректором на входе

Так как моделирование детектора производилось в программном пакете Geant4, где по умолчанию не реализованы поверхности сложной формы, был использован класс G4TessellatedSolid [8]. Для задания асферических плоскостей использовалась следующая формула поверхности:

$$z = \frac{cr^2}{1 + \sqrt{1 - c^2r^2}} + \alpha_1 r^2 + \alpha_2 r^4 + \alpha_3 r^6 + \alpha_4 r^8 + \alpha_5 r^{10}$$

Параметры поверхностей представлены в следующей таблице (все размеры в мм):

3. ПРОЦЕСС ГЕНЕРАЦИИ ОТКЛИКА НА МОЗАИКЕ ДЕТЕКТОРА

3.1. Генерация черенковских фотонов заряженными частицами ШАЛ

Традиционно телескопы СФЕРА регистрировали черенковский свет ШАЛ, отраженный от снежной поверхности. Оценка первичных параметров ливней производилась по пространственно-временному распределению света на мозаике телескопа. На части событий

телескопа СФЕРА-2 отчетливо виден сигнал [9], опережающий отраженный от снега свет на характерное время распространения фотонов от уровня наблюдения до снега и обратно. Сигнал был однозначно интерпретирован как прямой черенковский свет, попавший на мозаику через технологические отверстия в зеркале. Так возникла идея регистрации прямого черенковского света наряду с отраженным.

При конструировании СФЕРА-3 планируется рассмотреть несколько вариантов мозаики ФЭУ, корректирующей линзы, зеркала и, возможно, объектива и светочувствительной матрицы для прямого света. Поэтому для каждого моделируемого события ШАЛ необходимо сохранить:

- а) пространственно-временное распределение ЧС на уровне снежной поверхности для дальнейшего моделирования образа отраженного света,
- б) распределение фотонов по поперечному пространству, углам и временам прихода на нескольких потенциальных уровнях наблюдения над снегом для последующего расчета образа прямого света.

Код CORSIKA позволяет сразу учесть спектральную чувствительность используемых фотосенсоров и поглощение света в атмосфере, что дает возможность экономить время процессора — прослеживать только те фотоны, которые производят фотоэлектроны в сенсоре с вероятностью единица. В этом смысле их логично сразу называть фотоэлектронами.

Мы не используем стандартные выводные файлы CORSIKA для частиц и черенковского света в силу их избыточной детальности, приводящей к их неприемлемо большим размерам.

Вместо этого мы сохраняем распределения в виде многомерных массивов, адекватных по подробности и объему. Пространственно-временное распределение света на снегу сохраняется в виде квадратного ковра $3.2~{\rm km}\times3.2~{\rm km}$ в массиве 1280×1280 , каждая ячейка которого соответствует квадрату $2.5~{\rm m}\times2.5~{\rm m}$. Импульс света в каждом квадрате сохраняется в массив их $100~{\rm s}$ ячеек размером $5~{\rm hc}$. Прямой свет сохраняется на уровнях 0.5, 1.0, $2.0~{\rm km}$ над снегом в три массива размером $40\times40\times40\times40\times100$. Первые две размерности соответствуют пространственным координатам ($400~{\rm m}\times400~{\rm m}$), вторые две — угловым ($50°\times50°$), последняя — временной задержке ($500~{\rm hc}$).

Набор параметров, задаваемых коду при моделировании, включает первичную энергию, зенитный и азимутальный углы и тип первичной частицы, а также модель атмосферы и модель ядерного взаимодействия при сверхвысоких энергиях (модель ШАЛ). Мы используем набор фиксированных первичных энергий 1, 3, 10, 30 и 100 ПэВ и набор фиксированных зенитных углов 5, 10, 15, 20 и 25°, а азимутальные углы разыгрываются равномерно в диапазоне 0–360°. Базовый набор первичных ядер: Н, Не, N, S, Fe. Используются несколько моделей атмосферы из набора CORSIKA и модели

Название элемента	Радиус кривизны	α_1	$lpha_2$	α_3	α_4	$lpha_5$
Линза	∞	-1.1E-4	$5.8E{-}11$	$5.6E{-}16$	-1.2E-21	1.9E - 27
Зеркало	1200	2.5E - 5	4.7E - 11	-5.6E - 17	5.7E - 23	-1.7E - 29

Таблица. Параметры асферических поверхностей

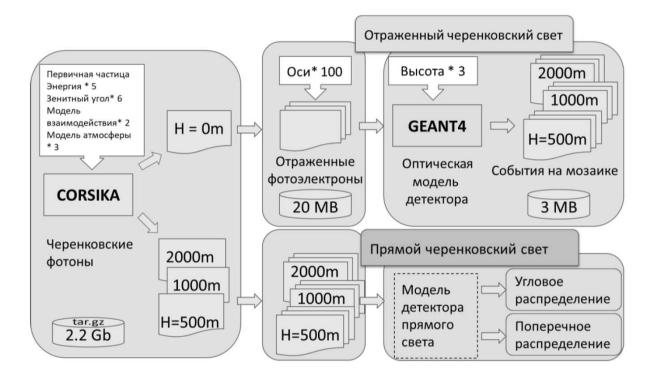


Рис. 2. Конвейер вычислений

ШАЛ QGSJET01 [10] и QGSJETII-04 [11]. Набор параметров при необходимости будет изменен и дополнен в процессе работы.

Базовый объем выборки искусственных событий ШАЛ составляет 100, что вполне достаточно для выявления основных флуктуаций продольного развития ливней. Поскольку сохраняются практически полные распределения по поперечному пространству и задержкам, на основе этих выборок затем генерируются значительно более объемные выборки черенковских образов.

3.2. Расшифровка данных CORSIKA и клонирование событий

Для генерации образов черенковского света на мозаике детектора используется приложение на языке FORTRAN.

На вход приложения подается следующая информация:

- 1. используемая модель атмосферы;
- 2. наименование выводного файла CORSIKA; Высота полета детектора относительно поверхности; Ключ регистрации:
- 3. 0 только черенковские фотоэлектроны;
- 4. 1 только фоновые фотоэлектроны;
- 5. 2 черенковские и фоновые фотоэлектроны.

Так как генерация событий в программном пакете CORSIKA требует большой вычислительной мощности и больших временных затрат, было принято решение клонировать полученные события без потери физического смысла для увеличения суммарного числа событий. Это было сделано с помощью параллельного переноса пятна черенковского света относительно оси телескопа с сохранением направления и угла широкого атмосферного ливня. Благодаря этому процессу из одного исходного события мы получаем 100 событий-клонов, которые в дальнейшем используются для расчетов Geant4.

УЗФФ 2023 2360802-3

3.3. Моделирование регистрации черенковского света детектором СФЕРА-3

Полученные с помощью FORTRAN распределения черенковского света на входном окне детектора подается на вход модели, написанной на Geant4. С помощью инструментов, предоставляемых пакетом, происходит моделирование прохождения фотоэлектронов от входного окна детектора до конечного элемента мозаики. В результате мы получаем выводной файл с полной информацией о каждой зарегистрированной частице: номер пикселя, в котором произошла регистрация; время регистрации фотоэлектрона в детекторной мозаике (время наследуется из CORSIKA, отсчет начинается с взаимодействия первичной частицы) и информационный ключ (событие или фон). Полученные образы могут использоваться для оценки используемых моделей с помощью дополнительной обработки.

3.4. Скрипт множественной генерации

Для получения образа на мозаике детектора необходимо совершить большое количество действий с использованием различных программ. Для того, чтобы упростить процедуру генерации и снизить вероятность человеческой ошибки, было принято решение автоматизировать генерацию образов в детекторе.

Для написания программы был выбран язык программирования Python в силу своей универсальности. Данный скрипт подразумевает дальнейшее масштабирование и внедрение не только процессов генерации откликов мозаики детектора СФЕРА-3, но и обработки полученных данных для определения массового состава первичной частицы.

На данный момент в скрипте реализованы все шаги регистрации данных из программы CORSIKA. Данные из полученных ковров протягиваются до снежной поверхности озера Байкал, выступающей в роли зеркала, после чего рассчитывается положение на входном окне детектора, где полученные образы обрабатываются приложение Geant 4. Все промежуточные файлы сохраняются и архивируются в каталоги с наследованием всех параметров первичного файла данных. Схема конвейера вычислений представлена на рисунке 2.

ЗАКЛЮЧЕНИЕ

В данной работе был представлен программный комплекс для множественной генерации образов черенковского света на детекторной мозаике телескопа СФЕРА-3. Разработка новых геометрий детектора и проверка построенных критериев разделения широких атмосферных ливней по первичной массе требует набора большой статистики событий.

Автоматизации рутинных задач и объединение отдельных программ в общий комплекс позволит упростить процедуру набора статистики, а также снизит влияние человеческого фактора на этот процесс.

При дальнейшем развитии комплекса этапы обработки получаемых событий также будут интегрированы и автоматизированы, что позволит эффективно проверять новые геометрии детектора.

Авторы выражают благодарность Российскому научному фонду (грант РНФ № 23-72-00006) за поддержку работы.

- [1] Thoudam S., Rachen J.P., Vliet A., Achterberg A. et al. // A&A. A33, 595. (2016). DOI: 10.1051/0004-6361/201628894
- [2] Чудаков А.Е. // Возможный метод регистрации ШАЛ по черенковскому излучению, отраженному от заснеженной поверхности Земли // Экспериментальные методы исследования космических лучей сверхвысоких энергий: Материалы Всесоюз. симп., 19-23 июня 1972 г. Якутск. фил. Сиб. отд. АН СССР, 1974. С.69.
- [3] Antonov R.A., Beschapov S.P., Bonvech E.A. et al. // Journal of Physics: Conference Series, 409(1) 012088. (2013).
- [4] *Чернов Д.В., Азра К.Ж., Бонвеч Е.А.* и др. // Ядерная Физика. **85**, № 6. 435 (2022).
- [5] Sandrock A. Status and prospects of the CORSIKA

- 8 air shower simulation framework // arXiv (Cornell University) [Preprint] DOI:10.48550/arXiv.2211.16057.
- [6] Agostinelli S., Allison J., Amako K. et al. // Geant4a simulation toolkit // NIMA 506 250. (2003). DOI: 10.1016/j.nima.2016.06.125
- [7] Acerbi F., Gundacker S. // Nuclear Instruments and Methods in Physics Research. **926**. 16 (2016).
- [8] Poole C.J., Cornelius I., Trapp J., Langton C.M. // IEEE Transactions on Nuclear Science. 59, N 4, 1695 (2012).
- [9] *Чернов Д.В.* и др. // Ядерная физика. **85**, № 6. 435 (2022).
- [10] Kalmykov N.N., Ostapchenko S.S., Pavlov A.I. // Nucl. Phys. B (Proc. Suppl.) 52B. 17 (1997).
- [11] Ostapchenko S. // Phys. Rev. **D89**. 074009. (2014).

Multiple image generation in the optical model of the SPHERE-3 detector

V.A. Ivanov^a, V.I. Galkin

Department of Cosmos Physics, Faculty of Physics, Lomonosov Moscow State University. Moscow 119991, Russia E-mail: ^aIvanov.va18@physics.msu.ru

УЗФФ 2023 2360802-4

The study of the origin and propagation of cosmic rays in the range from 1 to 1000 PeV is important. A new facility, SPHERE-3, with higher luminosity and better optical resolution, is being developed, based on the experience gained from the operation of the balloon facility SPHERE-2. This paper presents a simulation complex for the generation of Cherenkov light images on the detector mosaic of the SPHERE-3 telescope.

PACS: 96.50.sb, 96.50.sd.

Keywords: EAS, simulation, Cherenkov detector, automation.

Received 15 November 2023.

Сведения об авторах

- 1. Иванов Владимир Александрович студент кафедры физики космоса физического факультета МГУ; e-mail: Ivanov.va18@physics.msu.ru.
- 2. Галкин Владимир Игоревич доктор физ.-мат. наук, вед. науч., профессор на кафедре физики космоса физического факультета МГУ;

УЗФФ 2023 2360802-5