Особенности структуры и эффекта Мессбауэра в твердых растворах системы $(1-x)PbFe_{1/2}Nb_{1/2}O_3 - xPbFe_{2/3}W_{1/3}O_3$

Е.В. Глазунова, * С.П. Кубрин, Л.А. Шилкина, И.А. Вербенко, Л.А. Резниченко Южный федеральный университет, Научно-исследовательский институт физики

Россия, 344090, Ростов-на-Дону, пр. Стачки, 194

(Поступила в редакцию 20.05.2022; подписана в печать 28.07.2022)

В данной работе проводится исследование твердых растворов системы $(1-x)PbFe_{1/2}Nb_{1/2}O_3 - xPbFe_{2/3}W_{1/3}O_3$ с помощью рентгенографического анализа и Мессбауэровской спектроскопии. Для получения твердых растворов использовался метод двухстадийного твердофазного синтеза и спекания по обычной керамической технологии. Получены беспримесные TP системы $(1-x)PbFe_{1/2}Nb_{1/2}O_3 - xPbFe_{2/3}W_{1/3}O_3$. Выявлено отклонение параметров ячейки от правила Вегарда, что свидетельствует о расслоении структуры на микрообласти отличающиеся составом. Установлено возникновение кластеризации ионов Fe³⁺ в *B*-подрешетке. Показано, что введение в систему PbFe_{2/3}W_{1/3}O₃ приводит к частичному упорядочению катионов в *B*-положении.

РАСS: 75.85.+t УДК: 538.9 Ключевые слова: мультиферроики, твердофазный синтез, PbFe_{1/2}Nb_{1/2}O₃, PbFe_{2/3}W_{1/3}O₃, температура Нееля.

введение

Возможность управления магнитными параметрами с помощью электрического поля в ряде кислороднооктаэдрических соединений, содержащих 3d-металлы стимулирует исследовательскую деятельность в области создания, изучения мультиферроидных материалов, которые сочетают в себе несколько типов упорядочений: электрическое, магнитное и/или сегнетоэластическое [1–3]. Комбинирование этих упорядочений является очень сложной задачей, требующей поиска новых материалов и разработки технологии их получения.

Созданию высокоэффективных материалов на основе мультиферроиков препятствуют как ряд технологических трудностей, так и низкий уровень имеющихся магнитоэлектрических свойств. Это обусловлено, с одной стороны, особенностями магнитной и кристаллической структур: для возникновения сегнетоэлектричества, в большинстве случаев, характерно наличие пустой *d*-орбитали и наличие неподеленной электронной пары, в то же время ферромагнитизм и антиферромагнетизм, как правило, является следствием обменного взаимодействия между неспаренными электронами частично заполненных либо *d*-, либо *f*-подуровней. С другой стороны — большой разницей между температурами антиферромагнитного (АФМ) и сегнетоэлектрического (СЭ) фазовых переходов (ФП): ФМ упорядочение, обычно, слабее и редко проявляется выше комнатной температуры, для классических же сегнетоэлектриков характерны T_C много выше комнатной температуры [4]. Таким образом, создание сред с близкими температурами разнохарактерных упорядочений становится отдельной непростой задачей. Од-

ним из путей её решения может стать использование сред с размытыми сегнетоэлектрическим и магнитным переходом — мультирелаксоры [5]. Химической основой для создания таких сред могут выступать соединения со структурой перовскита типа $AB'_{\beta_1}B''_{\beta_2}O_3$. Примерами таких соединений являются ${\rm PbFe}_{1/2}{\rm Nb}_{1/2}{\rm O}_3$ (PFN) с T_C \sim 380 K и Heeля ~ 150 К [6, 7] и РbFe_{2/3}W_{1/3}O₃(PFW) имеющий $T_C \sim 180$ К и Нееля ~ 350 К [8, 9]. Общая координация спинов в указанных соединениях отвечает АФМ коллинеарной конфигурации G-типа. Тем не менее, создание системы твердых растворов (ТР) на их основе позволит создать неравномерное распределение катионов железа, что может привести к значительному нарушению пространственной однородности спиновой структуры, возникновению магнитного релаксорного состояния [10, 12]. А сочетание магнитной и зарядовой релаксаций приведет к возникновению новых интересных эффектов [13] и позволит расширить потенциал применений [14].

В связи с вышеизложенным в данной работе было проведено комплексное исследование закономерностей формирования структуры и свойств многокомпонентных сред на основе мультиферроиков $PbFe_{1/2}Nb_{1/2}O_3$ и $PbFe_{2/3}W_{1/3}O_3$.

1. ОБЪЕКТЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

ТР системы (1-x)РbFe_{1/2}Nb_{1/2}O₃ -*x*PbFe_{2/3}W_{1/3}O₃ в интервале концентраций 0.0 < x < 1.0 с шагом $\Delta x = 0.2$ были изготовлены методом двухстадийного твердофазного синтеза при $T_1 = 800 - 850^{\circ}$ С (в зависимости от состава); $T_2 = 850 - 900^{\circ}$ С (в зависимости от состава); $\tau_1 = \tau_2 = 4 - 10$ часов (в зависимости от состава). И спечены по обычной керамической технологии при $T_{\rm cn.} = 870 \div 1100^{\circ}$ С (в зависимости от состава), время спекания составило $\tau_{\rm cn.} = 2$ часа. В ка

^{*} kate93g@mail.ru

честве исходного сырья использовались: PbO (98%), Fe₂O₃ (99%), WO₃ (99.9%), Nb₂O₅ (98%).

Рентгенофазовый анализ проводили с использованием дифрактометра ДРОН–3 на отфильтрованном Со $K\alpha$ –излучения с фокусировкой по Брэггу–Брентано; стандартные методики расчёта структурных параметров (линейных — a, b, c, угловых — α , β , объёма — V ячейки перовскита). Точность определения параметров перовскитной ячейки составляла: линейных $\Delta a = \Delta b = \Delta c = \pm 0.003$ Å; угловых $\Delta \alpha = \Delta \beta = \pm 0.05^{\circ}$; объема $\Delta V = \pm 0.05$ Å³.

Мессбауэровское исследование керамических образцов TP системы $(1-x)PbFe_{1/2}Nb_{1/2}O_3-xPbFe_{2/3}W_{1/3}O_3$ проводили при температурах от 12 K до 320 K на Мессбауэровском экспресс–спектрометре MS1104Em. В качестве источника гамма-квантов использовали ⁵⁷Co в матрице Rh. Модельную расшифровку спектров проводили с использованием программы SpectRelax [15].

2. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

2.1. Рентгенографические исследования твердых растворов бинарной системы (1-*x*)PbFe_{1/2}Nb_{1/2}O₃-*x*PbFe_{2/3}W_{1/3}O₃

На дифрактограммах TP системы (1-x)PbFe_{1/2}Nb_{1/2}O₃-*x*PbFe_{2/3}W_{1/3}O₃ после синтеза обнаружены следы фазы пирохлора, но только в TP с x = 0.0 и 0.1. После спекания получены беспримесные TP системы (1-x)PbFe_{1/2}Nb_{1/2}O₃-*x*PbFe_{2/3}W_{1/3}O₃ (рис. 1).

Рис. 1. Дифрактограммы и дифракционное отражение 200 в увеличенном масштабе по оси 2θ твердых растворов системы (1-*x*)PbFe_{1/2}Nb_{1/2}O₃-*x*PbFe_{2/3}W_{1/3}O₃ после спекания

На рис. 2 показаны зависимости экспериментального параметра ячейки, и параметра, рассчитанного для ТР замещения по правилу Вегарда [16] от концентрации компонента *х*.

Зависимость $a_{\text{эксп}}(x)$ не соответствует $a_{\text{Вегард}}(x)$, при том, что образование ТР замещения в системе (1-x)PbFe_{1/2}Nb_{1/2}O₃-xPbFe_{2/3}W_{1/3}O₃ удовлетворяет основным требованиям изоморфизма [17]. Причем зависимость $a_{\text{эксп}}(x)$ в интервале 0.3 < x < 0.7 имеет наибольшее отклонение от линейной зависимости (правило Вегарда). В неметаллических ТР положительное отклонение $a_{\text{эксп}}(x)$ от линейной зависимости соответствует наличию областей несмешиваемости внутри области гомогенности данной системы [18].

Рис. 2. Зависимости параметра ячейки *a*: экспериментального (1), рассчитанного по правилу Вегарда (2), относительной плотности, $\rho_{\text{отн}}$, керамики от *x* в твердых растворах системы (1-*x*)PbFe_{1/2}Nb_{1/2}O₃-*x*PbFe_{2/3}W_{1/3}O₃

То есть, это свидетельствует о расслоении структуры на микро области отличающиеся составом, что происходит вследствие того, что в системе (1-x)PbFe_{1/2}Nb_{1/2}O₃-*x*PbFe_{2/3}W_{1/3}O₃ не образуется TP замещения со статистическим размещением *B*-катионов.

2.2. Мессбауэровские спектры твердых растворов бинарной системы $(1-x)PbFe_{1/2}Nb_{1/2}O_3-xPbFe_{2/3}W_{1/3}O_3$

Мессбауэровские спектры образцов системы (1x)PbFe_{1/2}Nb_{1/2}O₃-xPbFe_{2/3}W_{1/3}O₃ для образцов с x = 0...0.6 были измерены при комнатной температуре, а для керамик с x = 0.7...1.0 — при температуре 400 К. В парамагнитной фазе мессбауэровские спектры образцов представляют собой линии парамагнитного расщепления. Для каждого спектра были восстановлены функции распределений квадрупольного расщепления $P(\Delta)$.

Локальным максимумам функций $P(\Delta)$ соответствуют дублеты. Изомерные сдвиги дублетов соответствуют ионам Fe³⁺ в кислородном октаэдрическом окружении [19].

Мессбауэровский спектр $PbFe_{1/2}Nb_{1/2}O_3$ состоит из двух парамагнитных дублетов с разными параметрами, что говорит о неоднородности распределения катионов в *B*-подрешетке. То есть, в $PbFe_{1/2}Nb_{1/2}O_3$ возникают области с высокой и низкой концентрацией ионов

 ${\rm Fe}^{3+}$. Дублет D1 с большим значение квадрупольного расщепления соответствует ионам ${\rm Fe}^{3+}$ в областях с низкой концентрацией ионов железа, дублет D2 возникает от ионов ${\rm Fe}^{3+}$ с высокой их концентрацией.

Мессбауэровские спектры образцов с x = 0.1...1.0представляют собой суперпозиции трех, четырех либо пяти парамагнитных дублетов, которые отличаются значениями квадрупольных расщеплений. В сложных перовскитных оксидах величина квадрупольного расщепления преимущественно обусловлена симметрией локального окружения ионов Fe³⁺. Чем ниже симметрия локального окружения, тем больше величина квадрупольного расщепления.

Например, в TP с x=0.8 дублеты D1 и D3 с $\Delta(D1) = 0.68$ мм/с и $\Delta(D3) = 1.10$ мм/с обладают большими значения квадрупольных расщеплений, и, вероятно, соответствуют ионам Fe³⁺ в ближайшем окружении которых имеется один или два иона W⁶⁺. Дублеты D2 и D4 с $\Delta(D2) = 0.33$ мм/с, $\Delta(D4) = 0.10$ мм/с обладают наименьшим значением квадрупольного расщепления и, вероятно, имеют наиболее симметричную конфигурацию локального окружения Fe³⁺.

Параметры мессбауэровских спектров образцов твердых растворов системы (1-x)PbFe_{1/2}Nb_{1/2}O₃-*x*PbFe_{2/3}W_{1/3}O₃ (*x* = 0.8, 1.0) измеренных при комнатной температуре представлены в табл. 2. Для каждого из спектров были восстановлены функции распределения сверхтонких магнитных полей *P*(*H*). Локальным максимумам функций *P*(*H*) соответствуют зеемановские секстеты.

Величина сверхтонкого магнитного поля (СТП) секстета определятся числом связей Fe–O–Fe. Чем больше указанных связей, тем выше значение СТП. Таким образом, зеемановские секстеты мессбауэровских спектров образцов с x = 0.7...1.0 соответствуют ионам Fe³⁺ с различным числом не магнитных ионов в их ближайшем окружении.

Количество локальных состояний ионов Fe³⁺ в данном случае отличается от расчетных значений. В частности, для тройных перовскитных оксидов расчеты, проведенные с помощью биноминального распределения, показывают, что ионы Fe³⁺ обладают шестью локальными конфигурациями [20]. Отклонение числа состояний ионов Fe³⁺ от расчетного объясняется образованием областей локального упорядочения катионов В-подрешетки.

Оценка значений температур магнитных фазовых переходов (T_N) в исследуемых образцах твердых растворов проводилось с помощью методики температурного сканирования [21, 22] (рис. 3).

Полученные температурные зависимости позволили определить значения T_N , которые были обобщены в концентрационную зависимость $T_N(x)$ и представлены на рис. 4. Значения T_N линейно возрастает от 165 К для x=0 до 345 К для x=1.0. Согласно литературным данным, значение T_N для $\text{PbFe}_{1/2}\text{Nb}_{1/2}\text{O}_3$ составляет примерно 150 К, а для $\text{PbFe}_{2/3}\text{W}_{1/3}\text{O}_3$ по разным данным принимает значений в диапазоне от 343 К до

Рис. 3. Зависимости интенсивности парамагнитных линий мессбауэровских спектров образцов твердых растворов системы $(1-x)PbFe_{1/2}Nb_{1/2}O_3$ -хPbFe_{2/3}W_{1/3}O₃, приведенных к их значениям при температурах 300 К и 400 К

Отличие значений T_N от значений, приведенных в литературе, связно с распределением катионов B– подрешетки. В перовскитных соединениях значение T_N определяется концентрацией цепочек магнитных сверхобменных связей [20]. Концентрацию этих цепочек можно изменять либо увеличивая содержание магнитных катионов, либо изменяя степень катионного упорядочения.

Рис. 4. Концентрационная зависимость температуры Нееля для образцов твердых растворов системы $(1-x)PbFe_{1/2}Nb_{1/2}O_3-xPbFe_{2/3}W_{1/3}O_3$

Повышение T_N в образце $PbFe_{1/2}Nb_{1/2}O_3$, вероятно, обусловлено более высокой степенью катионного беспорядка. При этом значение T_N в образце $PbFe_{2/3}W_{1/3}O_3$ находится на нижней границе значений T_N . Вероятно, в *B*-подрешетке образца $PbFe_{2/3}W_{1/3}O_3$ происходит процесс локального упорядочения катионов, о чем так же свидетельствует наличие дублета с малым значением квадрупольного расщепления ($\Delta(D4) = 0.20 \text{ мм/c}$). Таким образом, при x=0 *B*-катионы разупорядочены, с ростом x наблюдается близкое к линейному возрастание T_N . Небольшие отклонения $T_N(x)$ от линейной зависимости в диапазоне 0.0 < x < 1.0 вероятно также обусловлены процессами локального упорядочения катионов в *B*-подрешетке.

Х	Т, К	Компо-	$\delta \pm 0.02,$	$\Delta \pm 0.02,$	$1^{\circ} \pm 0.02$,	A±1,			
		нента	мм/с	мм/с	мм/с	%			
0	300	D1	0.41	0.59	0.35	17			
		D2	0.41	0.35	0.35	83			
0.2	300	D1	0.41	0.61	0.34	34			
		D2	0.41	0.32	0.34	56			
		D3	0.41	1.08	0.34	10			
0.4	300	D1	0.40	0.72	0.32	31			
		D2	0.40	0.38	0.32	51			
		D3	0.40	1.14	0.32	9			
		D4	0.40	0.10	0.32	9			
0.6	300	D1	0.41	0.64	0.36	42			
		D2	0.41	0.34	0.36	44			
		D3	0.41	1.06	0.36	14			
0.8	400	D1	0.34	0.68	0.38	48			
		D2	0.33	0.33	0.38	27			
		D3	0.32	1.10	0.38	18			
		D4	0.32	0.10	0.38	7			
1.0	400	D1	0.34	1.09	0.38	17			
		D2	0.34	0.68	0.38	51			
		D3	0.34	1.47	0.38	6			
		D4	0.34	0.20	0.38	26			
где δ — изомерный сдвиг, Δ — квадрупольное расщепление,									
Γ — ширина линии, А — площадь компонент.									

Таблица 1. Параметры мессбауэровских спектров образцов твердых растворов (1-*x*)PbFe_{1/2}Nb_{1/2}O₃-*x*PbFe_{2/3}W_{1/3}O₃, измеренных в парамагнитной фазе

Таблица 2. Параметры мессбауэровских спектров образцов твердых растворов системы (1-*x*)PbFe_{1/2}Nb_{1/2}O₃-*x*PbFe_{2/3}W_{1/3}O₃, измеренных при комнатной температуре

х	Компонента	$\delta\pm0.02,$	$\Delta/\varepsilon \pm 0.02$,	H±1,	$\Gamma\pm0.02,$	$A\pm 1$,				
		мм/с	мм/с	кЭ	мм/с	%				
0.8	S1	0.427	-0.05	330	1.45	2				
	S2	0.427	-0.08	260	1.45	23				
	S3	0.427	0.00	191	1.45	32				
	S4	0.427	0.04	116	1.45	24				
	D1	0.427	1.22		0.50	7				
	D2	0.427	0.56		0.50	12				
1	S1	0.431	0.00	338	0.92	27				
	S2	0.431	-0.01	298	0.92	40				
	S3	0.431	-0.01	252	0.92	22				
	S4	0.431	0.01	200	0.92	11				
где δ — изомерный сдвиг, $arepsilon$ — квадрупольное смещение,										
$\Delta-$ квадрупольное расщепление парамагнитных компонент,										
$H-$ сверхтонкое магнитное поле на ядрах 57 Fe,										
$\Gamma-$ ширина линий, $\mathrm{A}-$ площадь компонент										

ЗАКЛЮЧЕНИЕ

Получены беспримесные TP системы (1-x)PbFe_{1/2}Nb_{1/2}O₃-*x*PbFe_{2/3}W_{1/3}O₃. На основе рентгеноструктурных и Мессбаэровских исследований показано, что реальная кристаллическая структура TP системы (1-x)PbFe_{1/2}Nb_{1/2}O₃-*x*PbFe_{2/3}W_{1/3}O₃ предполагает наличие областей частичного упорядочения катионов в *B*-положении. Показано, что с ростом концентрации PbFe_{2/3}W_{1/3}O₃ наблюдается близкое к линейному, но не линейное возрастание *T_N* от 165 К для *x*=0 до 345 К для *x*=1.0, что также может

[1] Пятаков А.П., Звездин А.К. // УФН. 2012. 182. С. 593.

- [2] Fiebig M., Lottermoser T., Meier D., Trassin M. // Nat. Rev. Mater. 2016. N 1. 16046.
- [3] Spaldin, N.A., Ramesh, R. // Nature Materials. 2019. 18, N 3. 203-212.
- [4] Веневцев Ю.Н., Гагулин В.В. // Изв. АН СССР. 1982. 4. С. 78.
- [5] Li. H., Zhuang J., Bokov A.A., Zhang N., Zhang J., Zhao J., Ren W., Ye Z.-G. // Journal of the European Ceramic Society. 2021. 41. P. 310.
- [6] Исупов В.И., Аграновская А.И., Хучуа Н.П. // Изв. АН СССР. Сер. Физ. 1960. С. 1271.
- [7] Raevskii I.P., Kirillov S.T., Malitskaya M.A. Filippenko V.P., Zaitsev S.M., Kolomin L.G. // Inorganic materials. 1988. 24. 217-220.
- [8] Smolenskii G.A., Ioffe A.F. // Colloque International de Magnetisme de Grenoble. 1958. 71-75.
- [9] Smolenskii G.A., Agranovskaya A.I., Isupov V.A. // Sov. Phys. Tech. Phys. 1959. 1. P. 907.
- [10] Ivanov S.A. Tellgren R., Rundlof H., Thomas N.W., Ananta S. // Journal of Physics Condensed Matter. 2000. 12. P. 2393.
- [11] Smolenskii G.A., Bokov V.A. // J. Appl. Phys. 1964. 35.
 P. 915.
- [12] Uchino K., Nomura S. // Journal of the Physical Society of Japan. 1976. 41, N 2. P. 542.
- [13] Chen L., Bokov A.A., Zhu W.M., Wu H., Zhuang J., Zhang N., Tailor H.N., Ren W., Ye Z.-G. // Sci. Rep.

быть обусловлено процессами локального упорядочения катионов в B-подрешетке. Полученные данные целесообразно использовать для создания твердых растворов на основе исследуемых мультиферроиков, а также для дальнейшего исследования системы (1-x)PbFe_{1/2}Nb_{1/2}O₃-xPbFe_{2/3}W_{1/3}O₃ в области магнитных и электрических свойств этих твердых растворов.

Исследование выполнено при финансовой поддержке Министерства науки и высшего образования РФ (Государственное задание в сфере научной деятельности научный проект N 0852-2020-0032)/(БАЗ0110/20-3-07ИФ), ЦКП НИИ физики ЮФУ.

2016. 6. P. 22327.

- [14] Ortega N., Kumar A., Scott J.F., Katiyar R.S. // J. Phys.: Condens. Matter. 2015. 27. P. 504002.
- [15] Matsnev M. E., Rusakov V. S. // AIP Conf. Proc. 2012. 1489. P. 178.
- [16] Dergunova N.V., Sakhnenko V.P. Fesenko E.G. // Crystallography. 1978. 23, N 1. P. 94.
- [17] Урусов В. С. Теоретическая кристаллохимия. М.: Издво МГУ, 1987.
- [18] Вест А. Химия твердого тела теория и приложения, часть 1. М.: МИР, 1988.
- [19] Menil F. // J. Phys. Chem. Solids. 1985. 46, N 7. P. 763.
- [20] Гуденаф Д. Магнетизм и химическая связь / Перев. с англ. Под ред. Левина Б.Е. и Горелика С.С. Изд-во. «Металлургия», 1966.
- [21] Raevski I.P., Kubrin S.P., Raevskaya S.I., Titov V.V., Sarychev D.A., Malitskaya M.A., Zakharchenko I.N., Prosandeev S.A. // Phys. Rev. B. 2009. 80. 024108.
- [22] Raevski I.P., Kubrin S.P., Raevskaya S.I., Titov V.V., Prosandeev S.A., Sarychev D.A., Malitskaya M.A., Stashenko V.V., Zakharchenko I.N. // Ferroelectrics. 2010. 398. P. 16.
- [23] Ivanov S.A., Eriksson S.-G., Tellgren R., Rundlof H. // Materials Research Bulletin. 2004. 39. P. 2317.
- [24] Смоленский Г.А., Чупис И.Е. // Успехи физических наук. 1982. 137, № 3. С. 415.

Features of the structure and the Mössbauer effect in solid solutions of the $(1-x)Pb(Fe_{1/2}Nb_{1/2})O_3-xPb(Fe_{2/3}W_{1/3})O_3$ system

E.V. Glazunova^a, S.P. Kubrin, L.A. Shilkina, I.A. Verbenko, L.A. Reznichenko

Research Institute of Physics, Southern Federal University Rostov-on-Don, 344090, Russia E-mail: ^akate93g@mail.ru

In this work, we study solid solutions of the system $(1-x)PbFe_{1/2}Nb_{1/2}O_3-xPbFe_{2/3}W_{1/3}O_3$ using X-ray diffraction and Mussbauer spectroscopy. To obtain solid solutions, we used the method of two-stage solid-phase synthesis and sintering according to conventional ceramic technology. Pure solid solutions of the $(1-x)PbFe_{1/2}Nb_{1/2}O_3-xPbFe_{2/3}W_{1/3}O_3$ system have been obtained. A deviation of the cell parameters from the Vegard rule was revealed, which indicates the stratification of the structure

into microregions differing in composition. The clustering of Fe^{3+} ions in the *B*-sublattice has been find. The introduction of $PbFe_{2/3}W_{1/3}O_3$ into the system leads to partial ordering of cations in the B position was shown. PACS: 75.85.+t.

Keywords: multiferroics, solid phase synthesis, $PbFe_{1/2}Nb_{1/2}O_3$, $PbFe_{2/3}W_{1/3}O_3$, Neel temperature. *Received 20 May 2022.*

Сведения об авторах

- 1. Глазунова Екатерина Викторовна канд. физ.-мат. наук, науч. сотрудник; e-mail: kate93g@mail.ru
- 2. Кубрин Станислав Петрович канд. физ.-мат. наук, тел.: (863) 218-40-00 доб. 11535, вед. науч. сотрудник; e-mail: stasskp@gamil.com.
- 3. Шилкина Лидия Александровна науч. сотрудник; e-mail: lid-shilkina@yandex.ru.
- 4. Вербенко Илья Александрович доктор физ.-мат. наук, гл. науч. сотрудник; e-mail: ilich001@yandex.ru.
- 5. Резниченко Лариса Андреевна доктор физ.-мат. наук, гл. науч. сотрудник; профессор, тел.: (863) 243-40-66, e-mail: lareznichenko@sfedu.ru.

Г