Определение сечения неупругого взаимодействия протонов с вольфрамом по данным космического эксперимента PAMELA

О.А. Голуб¹⁴,* А.Г. Майоров¹⁴,[†] О. Адриани^{1,2}, Г.А. Базилевская⁵, Дж. Барбарино^{3,4}, Р. Белотти^{6,7}, Э.А. Богомолов⁹, М. Боецио⁸, В. Бонвичини⁸, М. Бонджи^{1,2}, С. Боттай², А. Бруно^{7,19}, А. Вакки^{8,18}, Е. Ваннучини², Г. И. Васильев⁹, С. А. Воронов¹⁴, А. М. Гальпер¹⁴, К. Де Сантис^{11,13}, В. Ди Феличе^{11,21}, Дж. Зампа⁸, Н. Зампа⁸, М. Казолино^{11,20}, Д. Кампана⁴, А. В. Карелин¹⁴, П. Карлсон¹⁰, Дж. Касетеллини¹², Ф. Кафанья^{6,7}, А.Н. Квашин⁵, С. В. Колдашев¹⁴, С. А. Колдобский¹⁴, С. Ю. Крутьков⁹, А. А. Леонов¹⁴, В. В. Малахов¹⁴, Л. Марчелли^{11,13}, Н. Марчелли¹¹, М. Мартучи^{13,15}, В. Менн¹⁶, М. Мерге^{11,13}, В. В. Михайлов¹⁴, Е. Мокьютти⁸, А. Монако^{6,7}, Н. Мори², Р. Мунини^{8,17}, Дж. Остерия⁴, Б. Панико⁴, П. Папини², М. Пирс¹⁰, П. Пикоцца^{11,13}, М. Риччи¹⁵, С. Б. Риччиарини^{2,12}, С. А. Роденко¹⁴, М. Симон¹⁶, Р. Спарволи^{11,13}, П. Спилантини^{1,2}, Ю. И. Стожков⁵, Р. Ф. Юлбарисов¹⁴, Ю. Т. Юркин¹⁴, от имени коллаборации РАМЕLA ¹Флорентийский университет, Факультет физики и астрономии. Флоренция, Италия ²Национальный институт ядерной физики, отделение г. Флоренция. Флоренция, Италия ³Неаполитанский университет имени Фридриха II, Физический факультет. Неаполь, Италия ⁴Национальный институт ядерной физики, отделение г. Неаполь, Неаполь. Италия $^5 \Phi$ изический институт имени П.Н.Лебедева РАН. Москва, Россия ⁶Университет г. Бари, Физический факультет. Бари, Италия ⁷Национальный институт ядерной физики, отделение г. Бари. Бари, Италия ⁸Национальный инститит ядерной физики, отделение г. Триест. Триест, Италия ⁹Физико-технический институт имени А. Ф. Иоффе РАН. Санкт-Петербург, Россия ¹⁰Королевский технологический институт, Физический факультет и Центр физики космических частиц им. Оскара Клейна. Стокгольм, Швеция ¹¹Национальный институт ядерной физики, отделение в г. Рим «Тор Вергата». Рим, Италия ¹²Институт прикладной физики им. Нелло Каррары. Флоренция, Италия ¹³Римский университет «Тор Вергата», Физический факультет. Рим, Италия ¹⁴Наииональный исследовательский ядерный университет «МИФИ». Москва, Россия ¹⁵Национальный институт ядерной физики, Национальная лаборатория Фраскати. Фраскати, Италия ¹⁶Университет г. Зиген. Зиген, Германия ¹⁷ Университет г. Триест. Физический факультет, Триест, Италия ¹⁸Университет г. Удина. Факультет математики и информатики, Удине, Италия

¹⁹Центр космических полетов имени Годдарда, Отделение гелиофизики. Мериленд, США

²⁰ RIKEN, Институт передовых наук, Вако-Ши. Сайтама, Япония

²¹Итальянское космическое агентство, Центр научных данных. Рим, Италия

(Статья поступила 20.06.2019; Подписана в печать 02.10.2019)

В докладе приводится энергетическая зависимость сечения неупругого взаимодействия протонов с энергиями от нескольких сотен МэВ с ядрами вольфрама, полученная с использованием данных космического эксперимента PAMELA. Он предназначен для прецизионных измерений потоков космических лучей различной природы и включал набор детекторных систем для надёжного определения характеристик частицы (типа и энергии). В работе идентификация частиц осуществлялась при помощи трековой системы в магнитном поле, время-пролётной системы и системы антисовпадений. Позиционно-чувствительный калориметр с поглотителем из вольфрама, в свою очередь, позволяет изучить топологию взаимодействия определённых частиц внутри него, в частности, вычислить сечение их неупругого взаимодействия. Результаты работы могут быть востребованы для развития численных моделей взаимодействия частиц с веществом.

РАСS: 24.10.Lx, 26.40.+г УДК: 53.03 Ключевые слова: ядерная физика, космические лучи, сечение взаимодействия.

введение

На сегодняшний день одним из главных инструментов для моделирования прохождения частиц через вещество является пакет программ Geant4 [1]. Он примедаментальные исследования в физике высоких энергий, эксперименты на ускорителях и в космосе, а также для решения прикладных задач в области ядерной медицины, атомных реакторов и во многих других научно-прикладных исследованиях. Одной из проблем моделирования прохождения частиц через вещество в Geant4 является отсутствие единой готовой модели, которую можно было бы использовать для описания взаимодействий частиц и ядер с энергиями от

няется в различных научных областях, включая фун-

^{*}E-mail: golub394@gmail.com

[†]E-mail: mayorov.a.g@gmail.com

нескольких кэВ до нескольких ТэВ с разными средами. Сегодня в Geant4 существуют различные приближения, способные хорошо описывать определённый круг процессов в некотором диапазоне энергий, например, Quark-Gluon String model (QGS) [2], Fritiof String model (FTF) [3], Low Energy Parametrized model (LEP) [4] и другие. По этой причине созданы дополнения и расширения Geant4, а также независимые пакеты программ, например, QGSJET [5] или SYBILL [6].

Улучшение и развитие численных моделей тесно связано с получением новых экспериментальных данных о взаимодействиях частиц с веществом и последующим сравнением с результатами моделирования. Сегодня подобные работы проводятся, но в основном они опираются на данные только наземных ускорительных комплексов, когда доступен ограниченный набор налетающих частиц с несколькими фиксированными энергиями [7–9].

Космические лучи являются природным ускорителем элементарных частиц, включающим в себя непрерывный энергетический спектр частиц и всех стабильных ядер, благодаря чему может быть значительно дополнен имеющийся экспериментальный ряд данных для построения численных моделей. Идея использования космических лучей для определения характеристик взаимодействий с ядрами атомов атмосферы Земли уже применяется в экспериментах по регистрации частиц ультравысоких энергий. Однако трудностью является одновременное незнание сразу нескольких ключевых характеристик: не только сечений взаимодействия, но также типа и энергии частицы [10, 11]. Спутниковый эксперимент PAMELA [12], предназначенный для измерения потоков заряженных частиц, благодаря своему набору детекторов с высокой надежностью выбирает из потока частиц необходимую компоненту, формируя пучок частиц известного типа и энергии, приходящего под известным углом. И одновременно другой детектор — позиционно-чувствительный стриповый калориметр с поглотителем из вольфрама, служит мишенью для этих частиц.

В работе приводится предварительная энергетическая зависимость сечения неупругого взаимодействия протонов с ядрами вольфрама в диапазоне энергий от нескольких сотен МэВ до 200 ГэВ, полученная при обработке научных данных космического эксперимента РАМЕLА.

1. ЭКСПЕРИМЕНТ РАМЕLА

РАМЕLА — это спутниковый эксперимент, предназначенный для изучения потоков заряженных частиц в космическом излучении, который проводился на околоземной орбите на борту спутника Ресурс-ДК1 с июня 2006 до января 2016 года [12].

Прибор PAMELA, схема которого показана на рис. 1, позволяет определять жесткость (отношение импульса частицы к заряду) и знак заряда регистри-

руемых частиц, восстанавливая их траекторию в постоянном магнитном поле [13, 14]. Зависимость измеренных ионизационных потерь от жесткости даёт информацию об абсолютной величине заряда частицы. Общая совокупность детекторов [12, 15–20] позволяет идентифицировать тип частицы, измерить ее характеристики, такие как скорость и энергию, а также исключить фоновые события, определение характеристик которых затруднено или невозможно.

Рис. 1: Схема научной аппаратуры РАМЕLА; 1,3,8 — времяпролетная система; 2,4,5 — система антисовпадений; 6 трековая система; 7 — магнит; 9 — координатно — чувствительный калориметр; 10 — сцинтилляционный ливневый детектор; 11 — нейтронный детектор; 12 — гермоконтейнер

Характеристики спектрометра и диапазон энергий регистрируемых частиц приведены в табл. 1.

Взаимодействие частиц изучается в координатно — чувствительном калориметре (рис. 2) [21], который состоит из 22-х пар односторонних кремниевых стриповых плоскостей толщиной 380 мкм каждая, чередующихся с таким же количеством пластин поглотителя из вольфрама (W) толщиной по 260 мм. Общая толщина калориметра составляет ~ 16.3 радиационных длин и ~ 0.6 длин ядерного взаимодействия.

Калориметр предназначен для идентификации электронов на фоне антипротонов и позитронов на фоне протонов, а также для измерения энергии взаимодействующих в нём частиц. В основу разделения частиц легли измерения пространственных и энергетических различий ядерного и электромагнитного каскадов частиц.

Помимо идентификации частиц калориметр позволяет изучать характеристики развивающихся в нем каскадов: их структуру, точку начала взаимодействия, продольный и поперечный размер каскадов и т.д., а также определять вероятность взаимодействия частиц с веществом калориметра.

Таблица I:		
Геометрический фактор прибора		21.6 см ² ср
Максимальная регистрируемая жёсткость		$\sim 1.2\mathrm{TB}$
Измеряемый диапазон энергий протонов		$\sim 100 \mathrm{M}$ эВ- $\sim 1000 \Gamma$ эВ
Энергетическое разрешение	1 ГэВ	1%
для однозарядных частиц	30 ГэВ	5%
разной энергии	100 ГэВ	10%
Угловое разрешение		0.1-1°

Рис. 2: Электромагнитный калориметр

2. ОБРАБОТКА И АНАЛИЗ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ

Основной целью работы является получение энергетической зависимости сечения неупругого взаимодействия [22] протонов с ядрами вольфрама с энергиями выше нескольких сотен МэВ. Для этого использованы общие критерии идентификации протонов в потоке космических лучей, а также критерий идентификации событий, в которых наблюдается неупругое взаимодействие протонов с веществом калориметра.

Общие критерии отбора:

- 1. в трековой системе идентифицирован один трек, не касающийся стенок магнита;
- траектория в трекере восстановлена с использованием 4-х и более точек в отклоняющей проекции X, 3-х и более точек в ортогональной проекции Y;
- отсутствует сигнал во всех счетчиках системы антисовпадений;
- 4. в каждой из 6 плоскостей ВПС не более 1-го сработавшего сцинтилляционного счётчика.

Первые два критерия отбора позволяют исключить из анализа события с заведомо неправильно измеренными характеристиками. Последние два критерия отсеивают «ложные» триггеры, вызванные вторичными частицами, образованными во взаимодействиях космических лучей с веществом прибора. Для идентификации протонов используется кривая зависимости ионизационных потерь заряженной частицы в трековой системе от модуля измеренной жесткости частицы. Вероятность ошибки в определении типа частицы оценена при помощи моделирования Монте-Карло и составляет менее 1%. Применение общих критериев позволяет отобрать протоны с энергиями от нескольких сотен МэВ до ТэВ (верхняя граница обусловлена максимальной регистрируемой жесткостью равной примерно 1 TB).

Для выделения протонов, которые провзаимодействовали с веществом калориметра, вводится ограничение на отношение энерговыделения в радиусе 8 стрипов от трека, восстановленного в трекере, к полному энерговыделению (рис. 3).

3. ПОЛУЧЕННЫЕ РЕЗУЛЬТАТЫ

Описанные критерии были применены к экспериментальным данным, полученным в первые 5 лет работы прибора на орбите. В результате проведённого анализа была построена предварительная энергетическая зависимость сечения взаимодействия протонов с ядрами вольфрама, которое вычислено по формуле

$$\sigma = \frac{1}{x n} \ln \frac{N_0}{N},\tag{1}$$

где x = 0.26(толщина одной W плоскости) × 22(количество W плоскостей) = 5.72 см, n — концентрация ядер мишени, N_0 — количество отобранных протонов после общих критериев, N — количество отобранных протонов, испытавших неупругое взаимодействие в веществе калориметра.

Зависимость, полученная при помощи пакета программ Matlab [23], приведена на рис. 4, где показана чёрными точками. Даётся сравнение с измерениями сечения на ускорительных комплексах [24–27].

Полученные значения неупругого взаимодействия протонов с ядрами вольфрама близки к другим измерениям, однако в работе получен непрерывный энергетический ряд данных в диапазоне энергий от 500 МэВ до 200 ГэВ. Зависимость соответствует ожиданиям и воспроизводит форму нуклон-нуклонного взаимодействия.

Тем не менее, результат является предварительным, требуется улучшить методику идентификации неупру-

Рис. 3: Калориметр: отношение энерговыделения в радиусе 8 стрипов от трека, восстановленного в трекере, к полному энерговыделению

Рис. 4: Энергетическая зависимость сечения взаимодействия протонов с вольфрамом

гих взаимодействий частиц в калориметре, которая в данной работе упрощена и представлена одним критерием, а также оценить систематическую погрешность измерений.

ЗАКЛЮЧЕНИЕ

В работе предложен метод определения сечения неупругих взаимодействий частиц в калориметре при помощи прецизионных измерений потока космических лучей. Рассмотрены p-W взаимодействия в веществе калориметра прибора PAMELA. Выборка налетающих на мишень (калориметр) частиц получена при помощи набора детекторных систем, входящих в состав спектрометра. С их помощью определены тип и энергия частицы.

Методика применена к экспериментальным данным, накопленным в первые пять лет проведения эксперимента PAMELA на околоземной орбите. В результате анализа научных данных построена энергетическая зависимость сечения взаимодействия протонов с ядрами вольфрама, которая близка к измерениям на ускорителях, но при этом непрерывно покрывает диапазон энергий от 500 МэВ до 200 ГэВ.

Работа будет развиваться: требуется улучшить методику идентификации неупругих взаимодействий частиц в калориметре и провести оценку систематической погрешности измерений, а также рассмотреть другие ядра. Ожидаемые результаты могут быть полезны для развития численных моделей взаимодействия частиц с веществом.

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 19-02-00951.

- [1] Agostinelliae S. et al.// Nucl. Instrum. Meth. 2003. A506. P. 250.
- [2] Folger G., Wellisch J. P. // arXiv:nucl-th/0306007.
- [3] Uzhinsky V.V., on behalf of the Geant4 Hadronics Working Group // proceedings of CHEF Conference. 2013
- [4] Wright D.H. et al. // proceedings of AIP Conference. 2007
- [5] Ostapchenko S. // EPJ Web of Conferences. 52. 2013.
- [6] Ahn E.J. et al. // Phys. Rev. D. 2009. P.80.
- [7] Allison J. et al. // Nucl. Instrum. Meth. 2016. A835. P 186
- [8] Banerjee S. et al.// J. Phys.: Conf. Ser. 898. 042005.
- [9] Basaglia T. et al. // J. Phys.: Conf. Ser. 2015. 664. 072037.
- [10] Ulrich R. // EPJ Web of Conferences. 2013. 53.
- [11] Abbasi R. U. et al. // Phys. Rev. D. 2015. 92(3).
- [12] Adriani O. et al. // Astroparticle Physics. 2007. 27. P 296
- [13] Adriani O. et al. // Nucl. Instr. and Meth. A. 2003. 511. P 72
- [14] Bonechi L. et al. // Nucl. Phys. B. (Proc. Suppl.) 2003. 125. P. 308.

- [15] Adriani O. et al. // Nucl. Instr. and Meth. A. 2007. 572. P. 471.
- [16] Osteria G. et al. // Nucl. Instr. and Meth. A. 2004. 518. P.161.
- [17] Russo S. et al. // Nucl. Instr. and Meth. A. 2007. 572. P. 495.
- [18] Straulino S. et al. // Nucl. Instr. and Meth. A. 2006. 556. P. 100.
- [19] Ricciarini S., on behalf of the PAMELA collaboration // Nucl. Instr. and Meth. A. 2007. 582. P. 892.
- [20] Boezio M. et al. // Astroparticle Physics. 2006. 26. P. 111.
- [21] Boezio M. et al. // Nucl. Instr. and Meth. A. 2002. 487. P. 407.
- [22] Das A., Ferbel T. // Introduction to Nuclear and Particle Physics. World Scientific. 2005
- [23] http://www.mathworks.com/
- [24] Murthy P. V. R. et al. // Nucl. Phys. 1975. B92.
- [25] Barashenkov V.S., Gudima K.K., Toneev V.D. // Fortschritte der Physik. 1969. 17.
- [26] Wibig T., Sobczynrska D. // Journal of Physics G: Nuclear and Particle Physics. 1998. 24.
- [27] Trivedi H. P., Paliwal R. K. // IJSRSET. 2016. 2.

The cross section of the inelastic interaction of protons with the tungsten obtained with the PAMELA space experiment

- O.A. Golub^{14,a}, A.G. Mayorov^{14,b}, O. Adriani^{1,2}, G.C. Barbarino^{3,4}, G.A. Bazilevskaya⁵, R. Bellotti^{6,7},
 - M. Boezio⁸, E.A. Bogomolov⁹, M. Bongi^{1,2}, V. Bonvicini⁸, S. Bottai², A. Bruno^{7,19}, F. Cafagna^{6,7},
 - D. Campana⁴, P. Carlson¹⁰, M. Casolino^{11,20}, G. Castellini¹², C. De Santis^{11,13}, V. Di Felice^{11,21},
 - A.M. Galper¹⁴, A.V. Karelin¹⁴, S.V. Koldashov¹⁴, S. Koldobskiy¹⁴, S.Y. Krutkov⁹, A.N. Kvashnin⁵,
- A. Leonov¹⁴, V. Malakhov¹⁴, L. Marcelli^{11,13}, N. Marcelli¹¹, M. Martucci^{13,15}, W. Menn¹⁶, M. Merge^{11,13},
 - V.V. Mikhailov^{1,14}, E. Mocchiutti⁸, A. Monaco^{6,7}, R. Munini^{8,17}, N. Mori², G. Osteria⁴, B. Panico⁴,
 - P. Papini², M. Pearce¹⁰, P. Picozza^{11,13}, M. Ricci¹⁵, S.B. Ricciarini^{2,12}, S.A. Rodenko¹⁴, M. Simon¹⁶, R. Sparvoli^{11,13}, P. Spillantini^{1,2}, Y.I. Stozhkov⁵, A. Vacchi^{8,18}, E. Vannuccini², G.I. Vasilyev⁹,
- S.A. Voronov¹⁴, R.F. Yulbarisov¹⁴, Y.T. Yurkin¹⁴, G. Zampa⁸, N. Zampa⁸ on behalf of PAMELA collaboration

¹University of Florence, Department of Physics and Astronomy, Sesto Fiorentino. Florence, Italy

- ² INFN, Sezione di Florence. Sesto Fiorentino, Florence, Italy
- ³University of Naples «Federico II», Department of Physics. Naples, Italy ⁴INFN, Sezione di Naples, Naples, Italy, ⁵Lebedev Physical Institute, Moscow, Russia

⁶University of Bari, Department of Physics. Bari, Italy

- ⁷INFN, Sezione di Bari. Bari, Italy, ⁸INFN, Sezione di Trieste. Trieste, Italy
 - ⁹Ioffe Physical Technical Institute. St. Petersburg, Russia

¹⁰KTH, Department of Physics, and the Oskar Klein Centre for Cosmoparticle Physics, AlbaNova University Centre.

Stockholm, Sweden

¹¹INFN, Sezione di Rome «Tor Vergata'». Rome, Italy, ¹²IFAC, Sesto Fiorentino. Florence, Italy

- ¹³University of Rome «Tor Vergata'», Department of Physics. Rome, Italy
 - ¹⁴National Research Nuclear University MEPhI, Moscow, Russia

¹⁵INFN, Laboratori Nazionali di Frascati, Via Enrico Fermi 40. Frascati, Italy

¹⁶Universitdt Siegen, Department of Physics. Siegen, Germany

¹⁷University of Trieste, Department of Physics. Trieste, Italy

¹⁸University of Udine, Department of Mathematics, Computer Science and Physics. Udine, Italy

¹⁹NASA Goddard Space Flight Center. Heliophysics Division. Greenbelt, MD, USA

²⁰RIKEN, Advanced Science Institute. Wako-shi, Saitama, Japan

²¹Agenzia Spaziale Italiana (ASI) Science Data Center. Rome, Italy

E-mail: ^aogolub394@gmail.com, ^bmayorov.a.g@gmail.com

We present the energy dependence of the cross section for the inelastic interaction of protons with the tungsten in the energy

УЗФФ 2019

range from a few hundred MeV to a hundred GeV using the data of the PAMELA space experiment. It was intended for the precision measurements of the cosmic ray fluxes of different nature and include a set of detectors for the reliable determination of the particle characteristics (their type and energy). Identification of particles was carried out with the tracker system in magnetic field, time-of-flight and anticoincidence systems. A coordinate-sensitive calorimeter with a tungsten absorber, in turn, allows us to study the topology of the interaction of particles inside it, and calculate the cross-section of their inelastic interaction. The results of the work can be demanded for the development of numerical models describing particle's interactions.

PACS: 24.10.Lx, 26.40.+r. *Keywords*: nuclear physics, cosmic rays, cross section. *Received 20 June 2019.*

Сведения об авторах

от имени коллаборации PAMELA

- 1. Голуб Ольга Александровна ст. лаборант; e-mail: ogolub394@gmail.ru.
- 2. Майоров Андрей Георгиевич канд. физ.-мат. наук, доцент; e-mail: agmayorov@mephi.ru.