Закономерности гидродинамического поведения белков в концентрированных растворах по данным ЯМР с импульсным градиентом магнитного поля

А. М. Кусова^{1,2},* А.Э. Ситницкий¹,† Ю.Ф. Зуев^{1,2,3‡}

¹Казанский институт биохимии и биофизики,

Федеральный исследовательский центр «Казанский научный центр РАН»

Россия, 420111, Казань, ул. Лобачевского, д. 2/31

²Казанский федеральный университет, институт физики

Россия, 420008, Казань, ул. Кремлевская, д. 18

³Казанский государственный энергетический университет. Россия, 420066, Казань (Статья поступила 14.05.2018; Подписана в печать 25.10.2018)

Исследованы концентрационные зависимости коэффициента самодиффузии различных белков: фибриногена, трипсина и α -химотрипсина, α_S -казеина методом ядерного магнитного резонанса с импульсным градиентом магнитного поля (ЯМР ИГМП). Экспериментальные данные были проанализированы в рамках феноменологического подхода, основанного на фрикционном формализме неравновесной термодинамики Винка. Полученные результаты свидетельствуют о том, что феноменологический подход является универсальным, обеспечивая адекватное описание экспериментальных данных для белков различной структуры и формы в широком диапазоне концентраций. С помощью подхода Винка охарактеризована диффузионная подвижность белков, определена концентрация, выше которой начинается ассоциация молекул α_S -казеина.

РАСS: 87.15.km; 87.15.kr; 82.56.Pp. УДК: 577.322.3 Ключевые слова: белки, краудинг, ЯМР ИГМП, диффузия, трансляционная подвижность, белок-белковые взаимодействия, взаимодействия белок-растворитель.

ВВЕДЕНИЕ

Одной из отличительных особенностей живых систем является высокая концентрация макромолекул во внутриклеточном и внеклеточном пространствах (50–400 мг/мл) [1–3]. Макромолекулы, присутствующие в клетке, занимают значительную часть общего объема цитоплазмы (около 40%). В литературе такие условия, когда межмолекулярные расстояния сравнимы с линейными размерами молекул называются макромолекулярным краудингом. Краудинг влияет на структуру белка, форму, конформационную стабильность, связывание, ферментативную активность, агрегацию, белок-белковые взаимодействия, взаимодействия белков с нуклеиновыми кислотами.

Поведение макромолекул в растворах имеет большое значение для биологических систем. С ним связаны транспорт, термодинамическая стабильность, регуляция функциональной активности белков [4]. Трансляционная диффузия является одним из фундаментальных физических явлений, описывающих подвижность молекул [5]. Интерпретация концентрационной зависимости коэффициента самодиффузии (КСД) имеет большое значение для определения вкладов различных межмолекулярных взаимодействий.

В последние годы вырос интерес к гибридным материалам для решения задач регенеративной медицины и доставки лекарственных средств. Одними из наи-

более перспективных материалов в этих областях являются гидрогели на основе природных биополимеров (белков и полисахаридов). Гидрогели активно используются в клеточной терапии, для лечения ран, регенерации хрящевой и костной ткани, протезирования кровеносных сосудов, нервного волокна, мышечной ткани сердца, пролонгации действия лекарственных препаратов и пр. [6–8]. Все это возможно благодаря биосовместимости гидрогелей, сходств их структуры и физических свойств с тканями животного происхождения и возможности направленной регуляции их физикохимических характеристик.

Под задачи регенеративной медицины и средств доставки лекарств разрабатывают и используют казеиновые гидрогели, в которых трехмерная полимерная сетка стабилизирована межмолекулярными силами, включая электростатические (ван-дер-ваальсовые) взаимодействия, ионные мостики, водородные связи и гидрофобные взаимодействия. Очевидно, что характер и сила этих взаимодействий будет определяться не только химическим строением биомакромолекул, но и их межмолекулярными взаимодействиями в составе трехмерной полимерной матрицы.

В настоящей работе метод ядерного магнитного резонанса с импульсным градиентом магнитного поля (ЯМР ИГМП) использован для изучения гидродинамических особенностей диффузионного поведения белков в широком диапазоне концентраций: глобулярных, сфероидальных белков — трипсина (Tr) и α -химотрипсина (ChTr); фибриногена (Fg), имеющего сильно вытянутую форму с глобулярными и неструктурированными участками; α_S -казеина (α_S -CN) — белка с неупорядоченной структурой. Полученные обобщенные концентрационные зависимости КСД бел-

*E-mail: alexakusova@mail.ru †E-mail: sitnitsky@kibb.knc.ru

[‡]E-mail: yufzuev@mail.ru

ков проанализированы в рамках феноменологического подхода, основанного на фрикционном формализме неравновесной термодинамики. Показана возможность использования данного феноменологического подхода для анализа гидродинамического поведения белков различной формы и размера в широком диапазоне концентраций. Определены численные характеристики межбелковых взаимодействий. Планируется, что полученные в ходе выполнения работы результаты послужат фундаментальной основой для инженерии белковых гидрогелей под медико-биологические задачи.

1. МАТЕРИАЛЫ И МЕТОДЫ

Для исследования были выбраны сфероидальные глобулярные белки: трипсин (MM=24 кДа), α -химотрипсин (MM=24.8 кДа). Концентрационные зависимости КСД трипсина поджелудочной железы свиньи, тип IX-S (SIGMA-ALDRICH, USA) и бычьего α -химотрипсина, тип II (SIGMA-ALDRICH, USA) были получены в водном растворе ($H_2O + D_2O / 90\% + 10\%$), при температуре 30°C, pH=2 и pH=3 для трипсина и α -химотрипсина соответственно. Такие значения рН были выбраны в соответствии с наименьшей ферментативной активностью белков.

Концентрационная зависимость КСД бычьего фибриногена (Calbiochem, USA) получена в 0.02M Tris-HCl буфере, содержащим $150\,\mathrm{mM}$ NaCl при температуре $37^{\circ}\mathrm{C}$. Для фибриногена было выбрано значение $\mathrm{pH}{=}7.4$, это значение соответствует pH плазмы крови.

Также для исследования был выбран лиофилизированный белок α_S -казеин (α_S -CN) (MM=23.6 кДа). Концентрационные зависимости КСД α_S -казеина коровьего молока (SIGMA-ALDRICH, USA) получены в водных растворах (99.8% D₂O, SIGMA-ALDRICH, USA), при температуре 5°C и 30°C, рH=7. Значение рН было выбрано для увеличения растворимости белка и для предотвращения неконтролируемой агрегации α_S -казеина.

Эксперименты проводились на ЯМР спектрометре Bruker AVANCE III (600.13 МГц), с датчиком ТХІ 5 мм, оснащенным градиентной катушкой, способной создавать максимальный градиент магнитного поля 55.7 Гс/см. Для измерения КСД использована импульсная последовательность «стимулированное эхо» с биполярными градиентами (ВРР-LED). Измерения КСД проведены на ядрах протонов 1 Н (600.13 МГц). Сигнал воды подавлялся посредством преднасыщения. Использовались следующие экспериментальные параметры: длительность импульса 90° 10-13 мкс; ширина спектра 12 м.д.; время между повторами экспериментов 2-5 с. Амплитуда градиента поля изменялась от 2% до 98% от его максимального значения с шагом 16-32 при постоянном времени диффузии ($\Delta = 50 \, \text{мc}$) и длительности градиента ($\delta = 4-18\,\mathrm{mc}$). Обработка данных и анализ выполнялись с использованием программного обеспечения Bruker Topspin 3.5. Поскольку образцы

Fg были приготовлены в недейтерированном растворителе, запись спектров ЯМР и измерения КСД выполнялись в режиме «unlocked» [9]. Диапазон химического сдвига для измерения коэффициента самодиффузии был выбран в спектральной области, которая содержала сильные протонные сигналы при $0.9-0.6\,\mathrm{m.g.}$ для Fg и $1-0.5\,\mathrm{m.g.}$ для Tr и ChTr, $0.6-1\,\mathrm{m.g.}$ для $\alpha_S-\mathrm{CN.}$ Принимая во внимание возможные экспериментальные ошибки в определении концентрации и рH, коэффициенты самодиффузии были определены с точностью 7-10%.

2. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Для различных концентраций белков наблюдались моноэкспоненциальные или мультиэкспоненциальные диффузионные спады (рис. 1). Практически для всех концентраций Fg и α_S -CN наблюдалось моноэкспоненциальное поведение, тогда как для Tr и ChTr такое поведение наблюдалось для разбавленных и полуразбавленных растворов, а при увеличении концентрации спады имели мультиэкспоненциальную форму (рис. 1). Для моноэкспоненциального диффузионного спада амплитуда спинового эха A(g) зависит от градиента магнитного поля g следующим образом:

$$\frac{A(g)}{A(0)} = \exp\left(-D_s \gamma^2 g^2 \delta^2 (\Delta - \delta/3)\right),\tag{1}$$

где A(0) — амплитуда спинового эха при $g=0, \gamma$ — гиромагнитное отношение для протонов, δ — длительность градиентного поля, Δ — время диффузии, D_S — коэффициент самодиффузии.

В этом случае коэффициент самодиффузии определялся по линейному наклону зависимости в соответствии с уравнением (1). Мультиэкспоненциальные диффузионные спады описываются спектром дискретных коэффициентов самодиффузии или средним коэффициентом самодиффузии $\langle D_S \rangle$, который может быть определен с высокой точностью по начальному наклону зависимости при $g \to 0$ [10].

Отклонение формы диффузионного спада от моноэкспоненциальной конфигурации, скорее всего, связано с полидисперсностью диффундирующих частиц из-за их обратимой ассоциации [11]. Значения коэффициентов самодиффузии при бесконечном разбавлении были получены путем экстраполяции зависимостей на нулевую концентрацию: D_0 : $5.22 \times 10^{-11} \,\mathrm{m}^2/\mathrm{c}$ (Fg), $1.76 \times 10^{-10} \,\mathrm{m}^2/\mathrm{c}$ (Tr), $1.52 \times 10^{-10} \,\mathrm{m}^2/\mathrm{c}$ (ChTr), $8.1 \times 10^{-11} \, \mathrm{m}^2/\mathrm{c}$ ($lpha_S$ -CN). Для фибриногена, трипсина и α -химотрипсина полученные нами результаты близки к литературным данным для белков в мономерном состоянии [12, 13], что касается α_S -казеина значение коэффициента самодиффузии при бесконечном разбавлении не отклоняется о литературных данных [14] и соответствует радиусу димера α_S казеина [15].

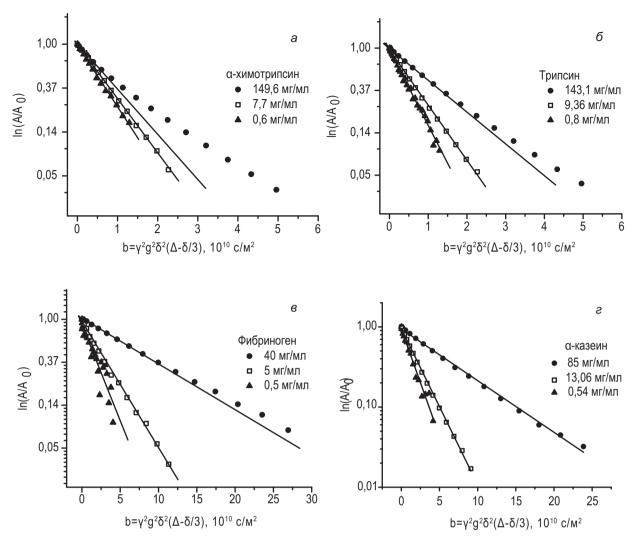


Рис. 1: Диффузионные спады: $a-\alpha$ -химотрипсина, $b-\alpha$ - трипсина, $b-\alpha$ - фибриногена, $b-\alpha$ -казеина

Полученные коэффициенты самодиффузии белка по-казаны на рис. 2.

Предварительный качественный анализ полученных зависимостей показывает, что диффузионная подвижность Fg и α_S –CN намного меньше, чем у Tr и ChTr. Для Fg такое поведение является следствием значительного различия в молекулярной массе, а также в размере Fg по сравнению с глобулярными белками. Известно, что молекула Fg имеет длину около 45 нм и диаметр 2–3 нм [16], а Tr и ChTr — сфероиды со средним радиусом около 2 нм [17]. Для Fg наблюдается замедление коэффициента самодиффузии, начиная с первых точек, достигающих примерно 10-кратного уменьшения при объемных фракциях белка около 4%. В то время как Tr и ChTr демонстрируют более слабое затухание диффузионной подвижности во всем изучаемом диапазоне концентраций.

Мы проанализировали данные по самодиффузии в соответствии с феноменологическим подходом Винка, основанным на фрикционном формализме неравно-

весной термодинамики [18]. Для коэффициента самодиффузии частицы данный подход дает:

$$D_s = \frac{RT}{f_{12}c_1 + f_{22}c},\tag{2}$$

где f_{12} — молярный коэффициент трения между растворителем и растворенным веществом, f_{22} — молярный коэффициент трения между молекулами растворенного вещества, c_1 и c — молярные концентрации растворителя и растворенного вещества соответственно. В нормализованной форме:

$$\frac{D_s}{D_s^0} = \frac{f_{12}c_1}{f_{12}c_1 + f_{22}c},\tag{3}$$

где D_s^0 коэффициент самодиффузии частицы при бесконечном разбавлении. Принимая во внимание, что сумма объемных фракций растворенного вещества и растворителя равна 1, мы имеем:

$$c_1 v_1 + c v_2 = 1, (4)$$

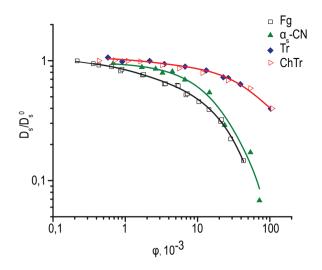


Рис. 2: Концентрационные зависимости КСД: фибриногена при 310 K, pH = 7.4 (квадраты); трипсина =303 K, pH = 2 (ромбы); α -химотрипсина = 303 K, pH = 3 (полые треугольники); α_S -казеина = 303 K, pH = 7 (заполненные треугольники)

где v_1 — парциальный объем молекулы растворителя, v_2 — парциальный объем молекулы растворенного вещества. Если обозначить:

$$\rho = \frac{f_{22}v_1}{f_{12}v_2}, \phi = cv_2, \tag{5}$$

то уравнение (3) можно представить в виде:

$$\frac{D_s}{D_s^0} = \frac{1}{1 + \rho \frac{\phi}{1 - \phi}}.$$
 (6)

Последнее выражение содержит только безразмерные составляющие и нормированный КСД и является удобной для описания концентрационной зависимости КСД белковых молекул в растворах.

Сначала проведем описание экспериментальных данных, полученных для α_S -CN. На рис. 3 видно, что теория Винка хорошо совпадает с полученными экспериментальными данными только до определенной концентрации белка, которая составляет около 0.019 объемной доли белка (25 мг/мл) с дальнейшим сильным отклонением экспериментальных от теоретических зависимостей.

Теория Винка, в которой коэффициент трения определяется размером диффундирующей частицы, постулирует фиксированность этого размера. Итак, мы предложили, что при дальнейшем увеличении концентрации белка мы имели дело с ассоциацией α_S –CN. Для определения размера ассоциатов был определен размер диффундирующей частицы α_S –CN в разбавленных растворах в соответствии с уравнением Стокса–Эйнштейна:

$$D_s = \frac{kT}{6\pi\eta R} \tag{7}$$

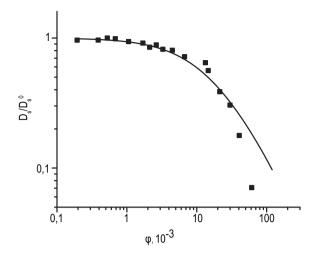


Рис. 3: Концентрационная зависимость КСД α_S –СN. Сплошная линия — теоретическая концентрационная зависимость КСД согласно феноменологическому подходу, основанному на фрикционном формализме неравновесной термодинамики

где k — постоянная Больцмана, T — температура, η — вязкость растворителя, R — радиус диффундирующей частицы. Соответственно, для двух типов диффундирующих частиц (растворитель и растворенная макромолекула) отношение их коэффициентов самодиффузии будет равно обратному отношению их гидродинамических радиусов:

$$\frac{D_{s1}}{D_{s2}} = \frac{R_2}{R_1} \tag{8}$$

Используя это соотношение для измеренных значений коэффициентов самодиффузии воды и белка, мы определили соотношение водных и белковых гидродинамических радиусов для образцов с различной концентрацией белка. Учитывая постоянство радиуса молекулы воды во всех образцах, можно определить изменение размеров белка с увеличением его концентрации. Таким образом, уже при 29.05 мг/мл наблюдается значительное увеличение (в 2.6 раза) размера молекулы белка по сравнению с разбавленным раствором 1.42 мг/мл. Это означает, что гидродинамический радиус диффундирующей частицы изменяется от 3.5 нм в разбавленном растворе, что соответствует димеру белка [15], до примерно 8 нм (концентрированный раствор), что свидетельствует об увеличении размера агрегатов α_S -CN при концентрации белка 29.05 мг/мл. Такой размер в очень приблизительной оценке может соответствовать 20-мерному ассоциату для твердых сферических частиц. Однако, учитывая неупорядоченную форму молекулы α_S -CN [19], эта оценка, по-видимому, сильно завышена. Очевидно, что при этой концентрации мы имеем олигомер белка низкого порядка, размер которого не противоречит литературным данным, в которых сообщается о существовании ассоциатов α_S -CN с R = 6 нм [20].

Для дальнейшего теоретического описания диффузионного поведения α_S -CN мы рассмотрим точку концентрации $25\,\mathrm{мг/мл}$ в качестве границы между мономерным и связанным состояниями белка Чтобы проанализировать применимость подхода Винка к гидродинамическим свойствам неупорядоченных белков, мы не выходим за пределы этой границы.

На рисунке 4 видно, что уравнение (6) дает хорошее описание экспериментальных данных для всех белков в широком диапазоне концентраций. Численный результат этой аппроксимации состоит в величине безразмерного параметра ρ (табл. 1), который отражает относительный вклад коэффициентов трения между растворителем и растворенным веществом (f_{12}) и между молекулами растворенного вещества (f_{22}) в коэффициент самодиффузии белка. Чтобы сравнить значения f_{12} и f_{22} для исследуемых белков, сначала определим коэффициент трения растворителя-растворенного вещества как [21]:

$$f_{12} = \frac{M(1 - \tau_2 \lambda)}{N_A s},\tag{9}$$

где M — молекулярная масса белка, N_A — постоянная Авогадро, s — коэффициент седиментации, λ — плотность растворителя.

Все необходимые данные для использования уравнения (9) были найдены в литературе [22–28]. Затем коэффициент трения между молекулами растворенного вещества (f_{22}) определялся через параметр ρ по формуле (5). Значения представлены в табл. 1.

При анализе коэффициентов трения сначала проведем сравнение между белками, принципиально различающимися по форме и в своей основе имеющими жесткую структуру, т.е. вытянутым фибриногеном и сфероидальными трипсином и α -химотрипсином. Нужно отметить почти десятикратное различие в величине ρ между сфероидальными и удлиненными белками. Значительно большее значение ρ физически означает, что для раствора Fg коэффициент трения между молекулами растворенного вещества f_{22} значительно больше, чем коэффициент трения между растворителем и растворенным веществом f_{12} . В то время как различие в природе и форме белка изменяет значение коэффициента трения между растворителем и растворенным веществом f_{12} в 5-6 раз, а коэффициент трения между молекулами белка увеличивается в 300-400 раз. Скорее всего основной причиной является гораздо более вытянутая и неправильная форма Fg по сравнению с сфероидальными Tr и ChTr. Согласно известным данным [29] молекула Fg имеет длину 45 нм и диаметр около 2-3 нм.

Молекула Fg имеет две дистальные глобулярные области D и одну центральную глобулярную область E, соединенную двумя тройными α -спиральными катушками длиной 17 нм. Кроме того, имеется относительно неструктурированная часть, простирающаяся от дистальной спиральной катушки каждой цепи $A\alpha$, называемой областями α C (остатки $A\alpha$ 221–610 в челове-

ческом Fg), содержащей около 25% массы молекулы. Области α C Fg взаимодействуют друг с другом и с центральной областью молекулы, но эти внутримолекулярные взаимодействия относительно слабы, поэтому могут быть неустойчивыми в растворе. Гибкие фрагменты α C двух разных молекул могут освобождаться, цепляться или даже перепутывать друг друга [30]. Последний процесс вызывает значительное трение чисто механической природы при движении молекуль Fg относительно друг друга. В результате молекулы Fg испытывают существенно более высокое трение при диффузии, чем молекулы трипсина и химотрипсина.

Далее необходимо включить в обсуждение результаты, полученные для неструктурированного белка α_S -CN. Интересно отметить, что неупорядоченная структура молекул α_S -CN приводит к уменьшению трения между растворителем и белком f_{12} и увеличению тех же характеристик взаимодействия между молекулами белка f_{22} , возможно, это происходит вследствие внутримолекулярных взаимодействий. Вероятно, основной причиной увеличения коэффициента трения между молекулами α_S -CN в сравнении со сфероидальными белками является неупорядоченная структура α_S -CN. Если сравнивать три белка (трипсин, α -химотрипсин, α_S -казеин), проанализированных в этом исследовании, то они имеют одинаковую массу, но, по оценкам, α_S -CN имеет больший размер, чем Tr и ChTr. Это связано с тем, что молекула α_S -CN имеет гибкие расширенные фрагменты, которые способствуют полимерным эффектам в межмолекулярных взаимодействиях.

Кажется информативным сравнить полученные параметры для неструктурированного и нерегулярного α_S -казеина как со схожими глобулярными белками: трипсином и α -химотрипсином с одной стороны, и с белком вытянутой, неправильной формы — фибриногеном (Fg), имеющего два длинных гибких домена (α Cпридатки), с другой стороны. Молекулы белка представляют собой огромные объекты по сравнению с молекулами растворителя. Кроме того, поверхность белков чрезвычайно негладкая и имеет тенденцию цепляться друг с другом при прямом механическом взаимодействии. По этой причине, когда даже белки глобулярной формы среднего размера (например, Tr и ChTr) контактируют друг с другом, это взаимодействие обеспечивает более высокий коэффициент трения между молекулами белка f_{22} ($\sim 6 \div 7$ единиц), нежели коэффициент трения при их взаимодействии с молекулами растворителя f_{12} (~ 1 единица). Ситуация резко меняется для белковых молекул неправильной формы, таких как α_S -CN (~ 15 единиц против ~ 0.7 единиц) или огромных Fg (~ 2430 единиц против ~ 7 единиц). Для этих белков гибкие домены могут цепляться и препятствовать движению молекул. Такие контакты обеспечивают долгоживущие ассоциации двух и более молекул.

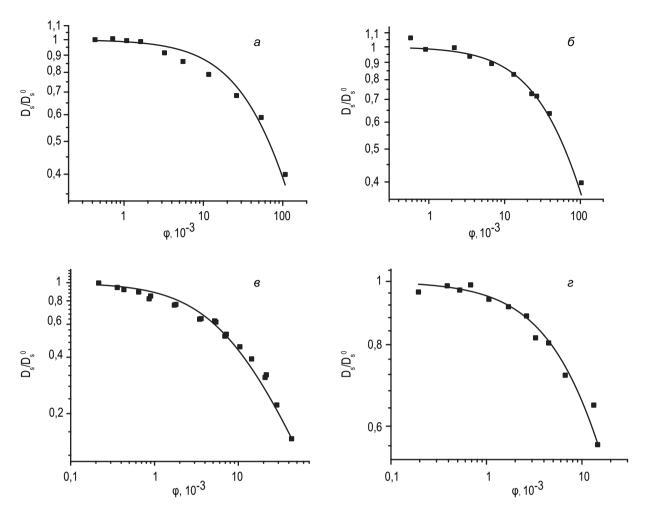


Рис. 4: Обобщенная концентрационная зависимость КСД: $a-\alpha$ -химотрипсина, $b-\alpha$ - трипсина, $b-\alpha$ - казеина. Сплошная линия показывает концентрационную зависимость КСД, которая основана на теории Винка

Таблица I: Молекулярная масса M, параметр ρ , гидродинамический коэффициент трения между молекулами белка и растворителя f_{12} , гидродинамический коэффициент трения между молекулами белка f_{22} , гидродинамический радиус R

Белок	М, кДа	ρ	$f_{12},~10^{-10}~{ m kr/c}$	$f_{22}, 10^{-6} \text{кг/c}$	<i>R</i> , нм
Tr	24.0	14.4	1.2	6.4	1.6
ChTr	24.8	14.0	1.4	7.6	1.8
Fg	330.0	127.9	6.9	2430.0	6.1
α_S -CN	23.6	52.0	0.7	14.5	3.5

ЗАКЛЮЧЕНИЕ

Для нахождения общих законов, описывающих трансляционную диффузию белков в растворах, необходимо определить влияние различных типов взаимодействий на обобщенную концентрационную зависимость КСД. В работе были получены концентрационные зависимости коэффициента самодиффузии белков (трипсина, α -химотрипсина, фибриногена, α_S -казеина), определены характеристики трансляци-

онной подвижности. Показана возможность использования феноменологического подхода Винка для описания гидродинамического поведения белков различной формы и размеров в широком диапазоне концентраций, включая условия краудинга. Феноменологический подход Винка обеспечивает хорошее описание для поведения всех типов белков.

Представленная работа дает новую информацию о поведении казеинов в растворах в широком диапазоне концентраций, включая начальные стадии гелеобразования. Была определена концентрация, при кото-

рой начинается ассоциация молекул казеина, а также размер получившихся олигомеров.

Полученные результаты обеспечивают лучшее понимание трансляционной подвижности белков в растворах, степени и условий ассоциации, а также взаимодействий происходящих в изучаемых системах. Результаты работы непременно стоит учитывать при создании новых материалов на основе биополимеров, таких как казеиновые гидрогели в применении к регенеративной медицине, что позволит заранее оценивать характеристики новых материалов, концентрируясь на желаемых свойствах.

Работа выполнена при поддержке РФФИ, грант №18-415-160011.

- [1] Fulton A. B. Cell. 1982. 30. P. 345.
- [2] Zimmerman S. B. Journal of molecular biology. 1991. 222.
- [3] Ellis R. J., Minton A. P. Nature. 2003. 425. P. 27.
- [4] Kuznetsova I. M., Turoverov K. K., Uversky V. N. Int. J. Mol. Sci. 2014. 15. P. 23090.
- [5] Price W.S. NMR Studies of Translational Motion. Principles and Application. Cambridge University Press: Cambridge, 2009.
- [6] Balakrishnan B., Banerjee R. Chem. Rev. 2011. 111.
- [7] Ahadian S., Sadeghian R.B., Salehi S., Ostrovidov S., Bae H., Ramalingam M., Khademhosseini A. Bioconjugate Chem. 2015. 26. P. 1984.
- [8] Song F., Zhang L., Shi N. Li. Colloids and Surfaces B: Biointerfaces. 2010. 79. P. 142.
- [9] Hoye T.R., Eklov B.M., Ryba T.D., Voloshin M., Yao L.J. Org. Lett. 2004. 6. P. 953.
- [10] Маклаков А. И., Скирда В. Д., Фаткуллин Н. Ф. Самодиффузия в растворах и расплавах полимеров. Казань: Казанский Государственный университет, 1987.
- [11] Minton A. P. Mol Cell Biochem. 1983. 55. P. 119.
- [12] Wasilewska M. Adamczyk, Z., Jachimska B. Langmuir. 2009. 25 (6). P. 3698.
- [13] Young M.E., Carroad P.A. Biotechnology and Bioengineering. 1980. 22. P. 947.
- [14] Melnikova D.L., Skirda V.D., Nesmelova I.V. J. Phys. Chem. 2017. 121(14). P. 2980.
- [15] Marchesseau S. J. Dairy Sci. 2002. 85. P. 2711.
- [16] Medved L. V., Weisel L. W., Thromb J. Haemostasis. 2009. 7. P. 355.
- [17] Zuev Yu. F., Vylegzhanina N. N., Zakhartchenko N. L.

- Appl. Magn. Res. 2003. 25. P. 29.
- [18] Vink H. J. Chem. Soc. Faraday Trans. 1985. 81. P. 1725.
- [19] Redwan E. M., Xue B., Almehdar H. A., Uversky V. N. Current Protein and Peptide Science. 2015. 16. P. 228.
- [20] Thorn D. C., Ecroyd H., Sunde M., Poon S., Carver J. C.
- Biochemistry. 2008. **47**. P. 3926. [21] *Padding J. T.* Theory of Polymer Dynamics. University of Cambridge: UK. 2005.
- [22] Schmidt D.G., Payens T.A.J., Markwijk B.W., Brinkhuis J.A. Biochemical and biophysical research communications. 1967. 27. P. 448.
- [23] Perkins S. J. European journal of biochemistry. 1968. 157. P. 169.
- [24] Pettersen E. F., Goddard T. D., Huang C. C., Couch G. S., Greenblatt D. M., Meng E. C., Ferrin T. E. J. Comput. Chem. 2004. 25. P. 1605.
- [25] Levashov A. V., Khmelnitsky Y. L., Klyachko N. L., Chernyak V. Ya, Martinek K. J. Coll. Interface Sci. 1982. 88. P. 444.
- [26] Siegel L. M., Monty K. J. Biochim. Biophys. Acta. 1966. 112. P. 346.
- [27] Pattabhi V., Shamaladevi N. J. Biomol. Struc. Dyn. 2004. 21. P. 737.
- [28] Capasso C., Rizzi M., Menegatti E., Ascenzi P., Bolognesi M. J. Mol. Recog. 1997. 10. P. 26.
- [29] Tsurupa G., Tsonev L., Medved L. Biochemistry. 2002. **41**. P. 64.
- [30] Zuev Y. F., Litvinov R. I., Sitnitsky A. E., Idiyatullin BZ., Bakirova DR., Galanakis D.K., Weisel JW. J. of Phys. Chem. B. 2017. 121(33). P. 7833.

Hydrodynamic behavior of proteins in concentrated solutions according to the pulsed field gradient NMR

A. M. Kusova^{1,2,a}, A. E. Sitnitsky^{1,b} Yu. F. Zuev^{1,2,3,c}

¹Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS Russia, 420111, Kazan 2 Kazan Federal University. Russia, 420008, Kazan ³Kazan State Power Engineering University. Russia, 420066, Kazan E-mail: a alexakusova@mail.ru, b sitnitsky@kibb.knc.ru, c yufzuev@mail.ru

The concentration dependences of self-diffusion coefficient of various proteins: fibrinogen, trypsin, α -chymotrypsin and α_S casein were studied by means of the pulse field gradient nuclear magnetic resonance. The experimental data was analyzed in a view of the Vink's phenomenological approach based on the frictional formalism of non-equilibrium thermodynamics. The obtained results indicate that the phenomenological approach is universal and provides an adequate description of the experimental data for

proteins of different structure and shape in a wide concentration range. With the help of Vink's approach the diffusion mobility of proteins was characterized. The concentration was determined, when the α_S -casein oligomerization appears.

PACS: 87.15.km; 87.15.kr; 82.56.Pp.

Keywords: proteins, crowding, PFG NMR, diffusion, translational mobility, protein-protein interactions, protein-solvent interactions.

Received 14 May 2018.

Сведения об авторах

- 1. Кусова Александра Михайловна мл. науч. сотрудник, студент; тел.: (939) 733-77-10, e-mail: alexakusova@mail.ru.
- 2. Ситницкий Александр Эдуардович канд. физ.-мат. наук, ст. науч. сотрудник; e-mail: sitnitsky@kibb.knc.ru.
- 3. Зуев Юрий Федорович доктор хим. наук, профессор, гл. науч. сотрудник; e-mail: yufzuev@mail.ru.