Влияние окружающей среды и длительного освещения на проводимость и фотопроводимость пленок металлоорганического перовскита CH₃NH₃PbI₃

 Д. В. Амасев¹,* С. А. Козюхин²,[†] Е. В. Текшина³,[‡] А. Г. Казанский⁴[§]
 ¹Институт общей физики им. А.М. Прохорова РАН Россия, 119991, Москва, ул. Вавилова, д. 38
 ²Институт общей и неорганической химии имени Н.С. Курнакова РАН Россия, 119991, Москва, Ленинский просп., д. 31
 ³Московский педагогический государственный университет Россия, 119991, Москва, ул. Малая Пироговская, д. 1, стр. 1
 ⁴Московский государственный университет имени М.В. Ломоносова, физический факультет, кафедра полупроводников Россия, 119991, Москва, Ленинские горы, д. 1, стр. 2 (Статья поступила 15.05.2018; Подписана в печать 23.05.2018)

Проведены исследования влияния длительного освещения при комнатной температуре пленок $CH_3NH_3PbI_3$ на их проводимость и спектральные зависимости фотопроводимости. Обнаружено существенное влияние окружающей образцы среды (вакуум, воздух) на результаты измерений. Показано, что длительное освещение не изменяет величины межзонной фотопроводимости, но приводит к метастабильному увеличению фотопроводимости вблизи энергии кванта $h\nu \approx 1.2$ эВ. Полученный результат указывает на фотоиндуцированное создание или заполнение локализованных состояний, расположенных в запрещенной зоне $CH_3NH_3PbI_3$ на энергетическом расстоянии 1.2 эВ от уровня переноса заряда неравновесными носителями

РАСS: 72.20.-і УДК: 621.315.592.9, 538.958 Ключевые слова: перовскиты, деградация, фотопроводимость.

введение

Металлоорганические материалы со структурой перовскита в последние годы привлекают к себе все больше внимания исследователей. Это связано с возможностью создания на их основе дешевых солнечных элементов на гибких подложках с высокой эффективностью преобразования света (22%) [1]. Высокой эффективности способствуют оптимальные для фотовольтаики параметры металлоорганических перовскитов, такие как ширина запрещенной зоны, высокая подвижность носителей заряда и большое время их жизни. Среди исследуемых в настоящее время органо-неорганических материалов одним из наиболее перспективных является перовскит иодид свинцаметиламмония (CH₃NH₃PbI₃ или MAPbI₃). Одной из серьезных проблем, связанных с использованием перовскитов для создания фотовольтаических структур, является изменение параметров данных структур при внешних воздействиях. В большинстве исследований, проведенных в работах [2,3], было показано, что выдержка данных структур во влажной атмосфере или в атмосфере кислорода приводит к деградации их параметров. Продолжительное освещение структур также уменьшает эффективность преобразования света данными структурами. При этом было отмечено, что

освещение во влажной атмосфере или в присутствии кислорода существенно усиливает деградацию [2,4,5]. Увеличение температуры от 25°С до 55°С также, согласно [6], увеличивает деградацию параметров. Следует отметить однако, что результаты исследований, представленных в литературе, в ряде случаев противоречат друг другу. В частности, согласно работе [7], выдержка в атмосфере кислорода либо только освещение в вакууме не приводят к изменению параметров структур. Согласно [7] только освещение в атмосфере кислорода вызывает деградацию материала. Заметим также, что в настоящее время нет однозначной точки зрения о метастабильности фотоиндуцированных изменений параметров фотовольтаических структур [2,8,9], а также характере изменения концентрации дефектов, вызванных освещением. В частности, в большинстве работ [5,9] уменьшение интенсивности люминесценции MAPbI₃ в результате предварительного освещения связывают с увеличением концентрации дефектов и, соответственно, центров безызлучательной рекомбинации. В то же время в работе [10] отмечалось, что длительное освещение не приводит к увеличению концентрации дефектов, а в работе [11] наблюдалось увеличение интенсивности люминесценции, которое авторы связывали с уменьшением концентрации дефектов в перовските после длительного освещения.

Таким образом, в настоящее время отсутствует единая точка зрения на природу и процессы, приводящие к изменению параметров фотовольтаических структур на основе металлоорганических перовскитов. В то же время, в большинстве работ [3,5,12] предполагается, что в результате освещения происходит изменение структуры материала, а именно, диссоциация составля-

^{*}E-mail: amoslegkie@gmail.com

[†]E-mail: sergkoz@igic.ras.ru

[‡]E-mail: ekaterina3141@mail.ru

[§]E-mail: kazanski@phys.msu.ru

ющих его элементов, в частности, органического катиона $CH_3NH_3^+$, с последующим его выходом из материала. При этом наличие кислорода или влаги усиливает фотоиндуцированные процессы. Возникающие при этом дефекты структуры, в частности вакансии иода, приводят к появлению дефектных состояний в запрещенной зоне материала [13]. Помимо этого, согласно [5,14,15] в результате освещения и фотоиндуцированных реакций с участием кислорода в материале происходит выделение иодида свинца (PbI₂) и метиламина (CH₃NH₂).

В большинстве работ [16–19] исследования фотоиндуцированной деградации проводились на фотовольтаических структурах на основе металоорганическиого перовскита, что затрудняло выяснение роли активного слоя перовскита в деградации параметров структуры. Фотоиндуцированное изменение параметров самих пленок MAPbI₃ исследовано в значительно меньшей степени. При этом результаты различных работ в ряде случаев не согласуются друг с другом. Поэтому представляет интерес исследовать влияние длительно освещения металлоорганического перовскита MAPbI₃ на такие его параметры как фотопроводимость и проводимость, которые определяют эффективность использования MAPbI₃ для создания солнечных элементов.

1. ИССЛЕДОВАННЫЕ ОБРАЗЦЫ И МЕТОДИКА ЭКСПЕРИМЕНТА

В настоящей работе исследовалась проводимость и фотопроводимость пленок перовскитов на основе иодида свинца. Пленки МАРbI₃ толщиной 600 нм формировались капельным методом на поверхности стеклянной подложки с напыленными на ней алюминиевыми контактами. Перовскит МАРbI3 был получен в безводном растворе диметилформамида (ДМФА), содержащим смесь из равных долей иодида метиламмония (CH₃NH₃I) и иодида свинца (PbI₂). Затем пленка перовскита на стеклянной подложке помещалась в сушильный шкаф и выдерживалась при температуре 120°С в течение 20 мин. Полученная пленка представляла собой поликристаллический материал черного цвета, фазовый состав которого по данным рентгенофазового анализа (РФА) соответствовал структуре CH₃NH₃PbI₃.

Измерения проводимости (σ) и фотопроводимости ($\Delta \sigma_{ph} = \sigma_{ph} - \sigma$, где σ_{ph} — проводимость при освещении) проводились как на воздухе, так и в вакууме (при остаточном давлении 10^{-3} Па). Перед всеми измерениями пленки отжигались в вакууме в течение 5 мин. при температуре 100° С. Фотоиндуцированные изменения параметров пленок MAPbI₃ исследовались после их освещения белым светом галогенной лампы накаливания интенсивностью 40 мВт/см² при комнатной температуре в течение 1 часа. Освещение проводилось как в вакууме, так и на воздухе.

2. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Анализ структуры исследованных пленок проводился с помощью сканирующей электронной микроскопии (СЭМ). Результаты представлены на рис. 1. Как видно, исследованная пленка имеет микрокристаллическую структуру. Причем размер микрокристаллов варьируется от 100 нм до нескольких микрометров.

Рис. 1: Фотография поверхности исследованной пленки МАРbI₃, сделанная с помощью СЭМ

Проведенные исследования показали, что выдержка пленок в атмосфере воздуха является основным фактором, определяющим измеряемую проводимость пленок (10⁻⁶-10⁻⁷ Ом⁻¹см⁻¹) при комнатной температуре как до, так и после их длительного освещения. На рис. 2 показана температурная зависимость проводимости пленки, находившейся в воздухе, после ее помещения в вакуум и увеличении температуры (кривая 1). На этом же рисунке показана температурная зависимость проводимости пленки в процессе уменьшения температуры после ее отжига в вакууме при температуре 100°С (кривая 2). Как видно из рисунка, отжиг в вакууме приводит к уменьшению измеряемой проводимости пленки. Это может быть связано с удалением в результате отжига влаги или кислорода с поверхности или из объема пленки.

На температурной зависимости проводимости, соответствующей отожженному образцу, можно обнаружить изменение энергии активации в области температур $40^{\circ}-60^{\circ}$ С. Это, по-видимому, связано со структурным переходом MAPbI₃ из кубической в тетрагональную фазу, который должен наблюдаться при 57°С [6]. Длительное освещение образцов, как в вакууме, так и в атмосфере воздуха практически не изменяло их проводимость. В то же время, помещение отожженного в вакууме образца в атмосферу воздуха вновь приводило к увеличению измеряемой проводимости.

Проведенные исследования показали, что условия измерений влияют также на измеряемую фотопроводимость образцов MAPbI₃. На рис. 3 представлены

Рис. 2: Температурные зависимости проводимости пленки МАРbI₃, полученные при увеличении температуры до отжига (1) и при понижении температуры после отжига (2)

спектральные зависимости фотопроводимости (нормированной на число падающих квантов N) отожженных пленок $MAPbI_3$, измеренные в вакууме и в атмосфере воздуха. Как видно из рисунка, при близком характере спектральных зависимостей $\Delta \sigma_{ph}$ величина фотопроводимости, измеренной в воздушной атмосфере, практически на порядок величины превышает значение $\Delta \sigma_{ph}$, измеренное в вакууме.

Рис. 3: Спектральные зависимости фотопроводимости $CH_3NH_3PbI_3$, нормированные на число падающих фотонов N, измеренные на воздухе (1) и в вакууме (2)

Полученный результат представляется неожиданным, поскольку, по мнению авторов [13], вхождение в MAPbI₃ кислорода, присутствующего в воздухе, должно приводить к появлению глубоких рекомбинационных состояний на поверхности пленки или на границах формирующих ее зерен. В ряде опубликованных работ [4,13,16–18,20] также отмечается существенная роль кислорода, диффундирующего из атмосферы в пленку MAPbI₃ в процессах, приводящих к изменению параметров данного материала. В то же время заметим, что полученное нами большее значение фотопроводимости пленок MAPbI₃ на воздухе может возникнуть, если при введении кислорода в исследуемую пленку произойдет смещение уровня Ферми в запрещенной зоне, которое приведет к изменению заполнения центров рекомбинации и уменьшению их концентрации, определяющей фотопроводимость в пленках MAPbI₃. Представленные выше сравнительные данные темновой проводимости в вакууме и на воздухе указывают на возможность подобного смещения уровня Ферми.

Рассмотрим результаты исследований влияния длительного освещения на фотопроводимость пленок MAPbI₃. Проведенные измерения показали, что спектральные зависимости фотопроводимости, измеренные в воздушной атмосфере, не изменялись после длительного освещения образца. В то же время, при измерении спектральных зависимостей фотопроводимости в вакууме наблюдалось различие характера спектров MAPbI₃, измеренных в «отожженном» состоянии и после длительного освещения пленки светом лампы накаливания. Полученные результаты показаны на рис. 4.

Рис. 4: Спектральные зависимости фотопроводимости MAPbI₃, измеренные в вакууме до (1) и после (2) длительного освещения. На вставке показана спектральная зависимость отношения $\Delta \sigma_{ph}(B) / \Delta \sigma_{ph}(A)$ (см. текст)

Как видно из рисунка, в области энергий квантов, соответствующих межзонному поглощению ($h\nu >$ 1.6 эВ), в результате предварительного освещения фотопроводимость пленки не изменяется. В то же время наблюдается увеличение фотопроводимости в области энергий квантов 0.8–1.4 эВ. Выдержка облученных светом образцов в темноте в течение 24 ч. приводила к восстановлению их исходной спектральной зависимости фотопроводимости.

На вставке рис. 4 показана спектральная зависимость отношения фотопроводимости, измеренной после

УЗФФ №3, 1830501 (2018)

освещения $\Delta \sigma_{ph}(B)$, к фотопроводимости, измеренной до освещения $\Delta \sigma_{ph}(A)$. Как видно, максимум отношения наблюдается при энергии кванта $h\nu \approx 1.2$ эВ. Полученный результат указывает на то, что длительное освещение приводит либо к возникновению, либо к заполнению локализованных состояний в запрещенной зоне перовскита, расположенных на энергетическом расстоянии 1.2 эВ от уровня переноса заряда неравновесными носителями. При этом, поскольку увеличение фотопроводимости при $h\nu \approx 1.2$ эВ не сопровождается уменьшением межзонной фотопроводимости, то, возможно, возникающие в результате освещения локализованные состояния не являются центрами рекомбинации и, соответственно не должны приводить к деградации фотовольтаических параметров солнечных элементов, созданных на основе MAPbI₃.

ЗАКЛЮЧЕНИЕ

Таким образом, в представленной работе проведены исследования влияния длительного освещения пленок

- [1] Yang W. S., Park B.-W., Jung E. H., Jeon N. J., Kim Y. C., Lee D. U., Shin S. S., Seo J., Kim E. K., Noh J. H. et al. Science. 2017. **356**. P. 1376.
- [2] Kwak K., Lim E., Ahn N., Heo J., Bang K., Kim S. K., Choi M. arXiv preprint, 2017.
- [3] Chauhan A. K., Kumar P. J. Phys. D: Appl. Phys. 2017.
 50, N 32. 325105.
- [4] Aristidou N., Eames C., Sanchez-Molina I., Bu X., Kosco J., Islam M.S., Haque S.A. Nature Communications. 2017. 8. P. 15218.
- [5] Nickel N. H., Lang F., Brus V. V., Shargaieva O., Rappich J. Adv. Electron. Mater. 2017. 3, N12. P. 1700158.
- [6] Misra R.K., Aharon S., Li B., Mogilyansky D., Visoly-Fisher I., Etgar L., Katz E. A. J. Phys. Chem. Lett. 2015. 6, N 3, P. 326.
- [7] Abdelmageed G., Jewell L., Hellier K., Seymour L., Luo B., Bridges F., Zhang J.Z., Carter S. Appl. Phys. Let. 2016. 109. N 23, P. 233905.
- [8] Gottesman R., Zaban A. Acc. Chem. Res. 2016. 49, N 2, P. 320.
- [9] Nie W., Blancon J.-C., Neukirch A.J., Appavoo K., Tsai H., Chhowalla M., Alam M.A., Sfeir M.Y., Katan C. et al. Nature Communications. 2016. 7. P. 11574.
- [10] Joshi P.H., Zhang L., Hossain I.M., Abbas H.A., Kottokkaran R., Nehra S.P., Dhaka M., Noack M., Dalal V.L. AIP Advances. 2016. 6, N11. P. 115114.
- [11] de Quilettes D. W., Zhang W., Burlakov V. M.,

 $MAPbI_3$ при комнатной температуре на их проводимость и спектральную зависимость фотопроводимости. Обнаружено существенное влияние окружающей образцы среды (вакуум, воздух) на результаты измерений. Показано, что длительное освещение не изменяет величины межзонной фотопроводимости, но приводит к метастабильному увеличению фотопроводимости вблизи энергии кванта $h\nu\approx 1.2$ эВ. Полученный результат указывает на фотоиндуцированное создание или заполнение локализованных состояний, расположенных в запрещенной зоне $MAPbI_3$ на энергетическом расстоянии 1.2 эВ от уровня переноса заряда неравновесными носителями.

Представленная работа выполнялась при частичной финансовой поддержке РФФИ (проект 16-29-06423 и проект № 18-32-00417 мол_а)

Graham D.J., Leijtens T., Osherov A., Bulović V., Snaith H.J., Ginger D.S., Stranks S.D. Nature Communications. 2016. **7**. P. 11683.

- [12] Gottesman R., Gouda L., Kalanoor B.S., Haltzi E., Tirosh S., Rosh-Hodesh E., Tischler Y., Zaban A., Quarti C., Mosconi E. et al. J. Phys. Chem. Lett. 2015. 6, N12, P.2332.
- [13] Gordillo G. OtáloraC. A., Reinoso M.A. J. Appl. Phys. 2017. 122. P. 075304.
- [14] Xing J., Wang Q., Dong Q., Yuan Y., Fang Y., Huang J. Phys. Chem. Chem. Phys. 2016. 18. 30484.
- [15] Li Y., Xu X., Wang C., Ecker B., Yang J., Huang J., Gao Y. J. Phys. Chem. C. 2017. **121**, N 7. P.3904.
- [16] Li Y., Li Y., Shi J., Li H., Zhang H., Wu J., Li D., Luo Y., Wu H., Meng Q. Appl. Phys. Let. 2018. 112, N 5. P. 53904.
- [17] Wang C., Zhang C., Huang Y., Tong S., Wu H., Zhang J., Gao Y., Yang J. Synthetic Metals. 2017. 227. P. 43.
- [18] Dao Q.-D., Tsuji R., Fujii A., Ozaki M. Org. Electron. 2017. 43. P. 229.
- [19] Ahn N., Kwak K., Jang M. S., Yoon H., Lee B. Y., Lee J.-K., Pikhitsa P. V., Byun J., Choi M. Nature Communications. 2016. 7. P. 13422.
- [20] Lee S.-W., Kim S., Bae S., Cho K., Chung T., Mundt L. E., Lee S., Park S., Park H., Schubert M. C. et al. Sci. Rep. 2016. 6. P. 38150.

The effect of the environment and prolonged illumination on conductivity and photoconductivity of organometallic perovskite CH₃NH₃PbI₃ films

D. V. Amasev^{1,a}, S. A. Kozukhin^{2,b}, E. V. Tekshina^{2,c}, A. G. Kazanskii^{3,d}

¹Prokhorov General Physics Institute of the Russian Academy of Sciences, GPI RAS Moscow, 119991, Russia ²Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Science (IGIC RAS) Moscow, 119991, Russia

³Moscow Pedagogical State University, Moscow, 119991, Russia

⁴Department of semiconductors, Faculty of Physics, Lomonosov, Moscow State University. Moscow, 119991, Russia E-mail: ^aamoslegkie@gmail.com, ^bsergkoz@igic.ras.ru, ^cekaterina3141@mail.ru, ^dkazanski@phys.msu.ru

The effect of prolonged illumination of $CH_3NH_3PbI_3$ films on their conductivity and spectral dependences of photoconductivity is studied. A significant influence of ambient medium (vacuum, air) on the results of measurements is found. It is shown that prolonged illumination does not change the interband photoconductivity, but leads to a metastable increase in photoconductivity near 1.2 eV quantum energy. The obtained result indicates the photoinduced creation or filling of localized states located in the forbidden gap of $CH_3NH_3PbI_3$ at an energy distance of 1.2 eV from the level of nonequilibrium carriers charge transfer.

PACS: 72.20.-i

Keywords: perovskites, degradation, photoconductivity. *Received 15 May 2018.*

Сведения об авторах

- 1. Амасев Дмитрий Валерьевич аспирант; e-mail: amoslegkie@gmail.com.
- 2. Козюхин Сергей Александрович доктор физ.-мат. наук, вед. науч. сотрудник; e-mail: sergkoz@igic.ras.ru.
- 3. Текшина Екатерина Владимировна студент; e-mail: ekaterina3141@mail.ru.
- 4. Казанский Андрей Георгиевич доктор физ.-мат. наук, профессор; тел.: (495) 939-41-18, e-mail: kazanski@phys.msu.ru.