# Описание спектров тяжелых и сверхтяжелых ядер в двухцентровой оболочечной модели

М. Л. Маркова<sup>1</sup>,\* Н. В. Антоненко<sup>2</sup>,<sup>†</sup> Т. Ю. Третьякова<sup>3</sup>,<sup>‡</sup> Т. М. Шнейдман<sup>4</sup>§

<sup>1</sup> Московский государственный университет имени М.В. Ломоносова,

физический факультет, кафедра общей ядерной физики

Россия, 119991, Москва, Ленинские горы, д. 1, стр. 2

Россия, 141980, Дубна, улица Жолио Кюри, д. 6

<sup>3</sup>Научно–исследовательский институт ядерной физики имени Д.В.Скобельцина МГУ

Россия, 119992, Москва, Ленинские горы, д. 1, корп. 2

<sup>4</sup>Казанский Федеральный Университет. Россия, 420021, Казань, ул. Татарстан, д. 2

(Статья поступила 02.02.2018; Подписана в печать 06.03.2018)

Работа посвящена описанию спектров квазичастичных возбуждений изотонов с N = 149: <sup>243</sup> Pu, <sup>245</sup> Cm, <sup>247</sup> Cf, <sup>249</sup> Fm, <sup>251</sup> No и <sup>253</sup> Rf. В рамках двухцентровой оболочечной модели произведена минимизация потенциальной энергии исследуемых ядер по коллективным координатам для нахождения основных состояний с последующим описанием низколежащих квазинейтронных возбуждений. В исследуемых ядрах был учтен эффект блокировки и кориолисово смешивание по проекции углового момента. Рассчитаны вероятности переходов в основные состояния и соответствующие времена жизни нижайших квазинейтронных уровней.

РАСS: 21.60.Cs, 21.10.Pc, 13.40.-f, 21.10.Tg УДК: 539.142, 539.143 Ключевые слова: тяжелые ядра, сверхтяжелые ядра, квазинейтронная структура, изомерное состояние, вероятность распада, время жизни состояния.

# введение

Описание спектров возбужденных состояний тяжелых и сверхтяжелых ядер до сих пор является сложной теоретико-экспериментальной задачей [1]: несмотря на значительный прогресс в экспериментальной физике, точное определение структуры данных спектров осложнено их малыми временами жизни [2]. С данной точки зрения особый интерес представляют долгоживущие изомерные состояния и вопрос о возможности их распада. Значительные времена жизни данных состояний по отношению к  $\gamma$ -переходу в основное состояние обусловлены комбинацией высокой степени запрета и малой энергии данного перехода. Благодаря большим временам жизни, становится возможным применение техники высокочувствительной спектроскопии для исследования *α*-распадов на возбужденные уровни более легких ядер. Для непосредственного предсказания появления и свойств изомерных состояний требуется создание современных теоретических подходов к описанию структуры тяжелых ядер.

При теоретическом описании изомерных состояний в тяжелых деформированных ядрах необходимо учесть, что заметную роль в данной области массовых чисел играет смешивание волновых функций основных и возбужденных состояний по проекции К полного момента ядра I на ось симметрии за счет вращения [3]. Подобное смешивание обеспечивается за счет

<sup>‡</sup>E-mail: tretyakova@sinp.msu.ru

так называемого взаимодействия Кориолиса в полном гамильтониане системы, способного значительно повлиять на времена жизни изомерных состояний. Учет данной поправки легче всего произвести для нечетных тяжелых деформированных ядер, представимых в виде жесткого четно-четного кора и валентной частицы, определяющей одноквазичастичные спектры исследуемых ядер, поскольку возможно избежать учета частично-дырочных возбуждений.

В настоящей работе рассмотрены нечетные изотоны цепочки с N = 149: <sup>243</sup> Pu, <sup>245</sup>Cm , <sup>247</sup>Cf, <sup>249</sup>Fm , <sup>251</sup>No и <sup>253</sup>Rf. Для данных ядер, согласно экспериментальным данным, наблюдается относительно долгоживущее состояние  $1/2^+$ , время жизни которого колеблется от 0,29 мкс для изотона <sup>245</sup>Cm до 1,02 с для <sup>251</sup>No. Возможно воспроизведение и описание свойств данного уровня для всей цепочки изотонов в рамках двухцентровой оболочечной модели ядра.

# 1. МОДЕЛЬ ЧАСТИЦА-ПЛЮС-РОТОР ДЛЯ ТЯЖЕЛЫХ ДЕФОРМИРОВАННЫХ ЯДЕР

Выбор нечетных изотопов с N = 149 для исследования одноквазичастичной структуры связан также с удобством представления этих ядер в виде жесткого ротора (или четно-четного ядерного кора) с нулевым полным моментом и отдельной частицы (нейтрона), момент **J** которой и будет определять полный угловой момент системы [4]. Тогда полный момент рассматриваемого ядра можно представить в виде:

 $\mathbf{I} = \mathbf{J}_{core} + \mathbf{j}_{particle} + \mathbf{R} = \mathbf{j}_{particle} + \mathbf{R} = \mathbf{j} + \mathbf{R}, \quad (1)$ 

где **R** есть механический момент вращения ядра. При этом полный гамильтониан системы можно разбить на

1820202 - 1

<sup>&</sup>lt;sup>2</sup>Объединенный институт ядерных исследований

<sup>\*</sup>E-mail: ml.markova@physics.msu.ru

<sup>&</sup>lt;sup>†</sup>E-mail: antonenk@theor.jinr.ru

<sup>&</sup>lt;sup>§</sup>E-mail: shneyd@theor.jinr.ru

внутреннюю и коллективную составляющие, выделив в коллективной части отдельно вращательную компоненту и компоненту, ответственную за появление кориолисова взаимодействия:

$$H_{tot} = H_{intr} + H_{col} = H_{intr} + H_{rot} + H_{rec} + H_{cor},$$
(2)

а коллективная компонента во внутренней системе отсчета, жестко связанной с ядром имеет вид:

$$H_{col} = \sum_{i=1}^{3} \frac{I_i^2}{2\Im_i} + \sum_{i=1}^{3} \frac{J_i^2}{2\Im_i} - \sum_{i=1}^{3} \frac{I_i J_i}{\Im_i} = \frac{I^2 - I_3^2}{2\Im} + \frac{j_1^2 + j_2^2}{2\Im} - \frac{I_+ j_- + I_- j_+}{2\Im}.$$
 (3)

Здесь добавка Кориолиса выражена через лестничные операторы полного момента ядра  $I_{\pm}$  и углового момента частицы  $j_{\pm}$ :

$$H_{cor} = -\frac{I_+ j_- + I_- j_+}{2\Im}.$$
 (4)

Если представить полные волновые функции ядра с помощью комбинаций произведений по квантовому числу K внутренних волновых функций  $\Phi_K^i$  и коллективных компонент **IMK**, представимых с помощью  $D_{MK}^I(\Omega)$ функций Вигнера от углов Эйлера, описывающих вращение ядра:

$$\Psi_{\mathbf{M}}^{\mathbf{iI}} = \sum_{K} \Phi_{K}^{i} \mathbf{IMK} = \sum_{K} \Psi_{\mathbf{MK}}^{\mathbf{iI}},$$
(5)

учет добавки Кориолиса приводит к смешиванию волновых функций ядра по *K*, за счет изменения матричных элементов полного гамильтониана:

$$H_{\frac{1}{2}\frac{1}{2}} = \epsilon_{\frac{1}{2}}^{iI} + \frac{1}{2\Theta} (I(I+1) - \frac{1}{4}) - \frac{1}{2\Theta} (-1)^{I+\frac{1}{2}} \langle \Phi_{\frac{1}{2}}^{i} | J_{+} | \Phi_{-\frac{1}{2}}^{i} \rangle, \quad (6)$$

для диагональных элементов с  $K = \frac{1}{2}$ ,  $\epsilon_{\frac{1}{2}}^{iI}$  — одночастичные энергии, а для недиагональных элементов с  $K_i = K_j + 1$ :

$$H_{ij} = \frac{1}{2}\sqrt{(I-K)(I+K+1)} [\langle \Phi_K^i | J_- | \Phi_{K+1}^i \rangle - \langle \Phi_{-K}^i | J_+ | \Phi_{-K-1}^i \rangle].$$
(7)

Величина  $a_i = -\langle \Phi^i_{\frac{1}{2}} | J_+ | \Phi^i_{-\frac{1}{2}} \rangle$  есть параметр развязывания, определяющий масштаб смешивания, а также направление смещений энергетических уровней.

# 2. ДВУХЦЕНТРОВАЯ ОБОЛОЧЕЧНАЯ МОДЕЛЬ АТОМНЫХ ЯДЕР

Для микроскопического определения базиса волновых функций и набора одночастичных энергий, связанных с появлением ва-лентного нейтрона в ядре, используется двухцентровая оболочечная модель [5]. Ранее модель успешно использовалась для описания квазичастичной структуры тяжелых и сверхтяжелых ядер [6-9]. В рамках данной модели ядро рассматривается в виде двух фрагментов, для которых, задается относительное удлинение  $\lambda$ , деформации отдельных фрагментов  $\beta_i$  (i = 1, 2), параметр шейки  $\epsilon$ , расположенной между фрагментами и величина массовой асимметрии *η*. В настоящей работе произведено рассмотрение зеркально симметричных компактных форм ядра  $\eta = 0$ , максимально близких к основному состоянию, при этом для описания формы ядра можно ограничиться величиной относительного удлинения  $\lambda = \frac{l}{2B_0}$ , отражающего длинну ядра вдоль оси симметрии по отношению к диаметру ядра в состоянии сферы, а также параметрами деформации  $\beta_1 = \beta_2 = \frac{a}{b}$  определяющимися через отношения полуосей эллипсоидов, описывающих отдельные, в данном случае равные, фрагменты. Центры фрагментов при  $\lambda > 1$  находятся на некотором расстоянии друг от друга, и при уменьшении данного расстояния до нуля ( $\lambda = 1, \epsilon = 0$ ) модель переходит в нильссоновскую модель ядра.

Полный одночастичный гамильтониан данной модели зависит от координат валентного нейтрона, его орбитального момента, спина и представлен в виде:

$$H_{TCSHM} = -\frac{\hbar^2 \nabla^2}{2m_0} + V(\rho, z) + V_{LS}(\mathbf{r}, \mathbf{p}, \mathbf{s}) + V_{L^2}(\mathbf{r}, \mathbf{l}),$$
(8)

при этом одночастичный потенциал вблизи основного состояния представлен комбинацией осцилляторных потенциалов со смещенными на величины и центрами.

Расчет в рамках данной модели связан также с определением потенциальной поверхности (зависимости потенциальной энергии ядра от коллективных координат). Потенциальная энергия состоит из потенциальной энергии жидкой капли  $W_{LD}$ , учитывающей макроскопическую структуру ядра, а также оболочечной  $W_{shell}$  и парной  $W_{pair}$  поправок к ней, введение которых позволяет, в свою очередь, ввести в рассмотрение микроскопическую структуру ядра (макроскопический-микроскопический подход):

$$W(\lambda,\beta) = W_{LD}(\lambda,\beta) + W_{shell}(\lambda,\beta) + W_{pair}(\lambda,\beta),$$
(9)

при этом минимизация по коллективным координатам и позволяет определить их равновесные значения этих величин, отвечающие основному состоянию, для которого производится расчет одночастичных спектров в двухцентровой оболочечной модели.

В настоящей работе была произведена минимизация потенциальных поверхностей для исследуемых ядер и найдены значения переменных  $\lambda$  и  $\beta$ , отвечающие минимуму потенциальной энергии (рис.1).

УЗФФ 2018



Pис. 1: Зависимость потенциальной энергии от параметра деформации фрагмента для исследуемых изотонов  $^{243}$ Pu,  $^{245}$ Cm ,  $^{247}$ Cf,  $^{249}$ Fm ,  $^{251}$ No и  $^{253}$ Rf

# 3. РЕЗУЛЬТАТЫ РАСЧЕТОВ

### 3.1. Квазинейтронные спектры

В рамках двухцентровой оболочечной модели в настоящей работе при значениях  $\lambda_{min}$  и  $\beta_{min}$  расчитаны однонейтронные спектры энергий для исследуемых изотонов. С помощию также расчитанных параметров щели  $\Delta_n$  и энергий Ферми  $E_F$  расчитаны квазинейтронные энергии состояний [4]:

$$E_K^Q = \sqrt{(\epsilon_K^{SP} - E_F)^2 + \Delta^2}.$$
 (10)

Несмотря на значительное перемешивание волновых функций, поправка на кориолисово взаимодействие не приводит к заметному изменению спектров энергий, лишь незначительно смещая уровень 1/2<sup>+</sup> вниз на величину порядка десятка кэВ за счет положительных величин параметров развязывания (разд. 2, табл. I).

Учет влияния парного взаимодействия на вид квазинейтронных спектров был проведен посредством рассмотрения эффекта блокировки [4] для каждого изотопа. Для наиболее корректного учета данного явления параметр спаривания  $G_n$ , описывающий парные взаимодействия нейтронов монопольного типа, подбирался за счет изменения множителя  $\alpha$  таким образом, чтобы рассчитанные значения  $\Delta_n$  практически не изменялись при подключении блокировки:

$$G_n = \frac{1}{A}\dot{\alpha}(19, 2-7, 4\frac{A-2Z}{A}).$$
 (11)

Расчитанные квазинейтронные спектры в двухцентровой оболочечной модели (слева) и с учетом блокировки (справа) для исследуемых изотонов приведены на рис. 2.

#### **3.2. Вращательные полосы с** K = 1/2

Наиболее сильно взаимодействие Кориолиса сказывается на состоянии, отвечающем проекции полного момента на ось симметрии ядра K = 1/2.

Оно формирует пилообразную зависимость энергии этого состояния от полного момента ядра I, приводя к отклонению состояний с I = 5/2, 9/2 и т.д. вниз и состояний I = 3/2, 7/2, 11/2 и т.д. вверх по отношению к квадратичной зависимости, имеющей место в отсутствие поправки  $H_{cor}$  в полном гамильтониане. Экспериментальные значения (красные точ-

Таблица I: Параметры развязывания для исследуемых изотонов

| <sup>243</sup> Pu | <sup>245</sup> Cm | <sup>247</sup> Cf | <sup>249</sup> Fm | $^{251}\mathrm{No}$ | <sup>253</sup> Rf |
|-------------------|-------------------|-------------------|-------------------|---------------------|-------------------|
| -1,685            | -1,683            | -1,682            | -1,679            | -1,682              | -1,689            |

ки на рис. 3) для изотонов <sup>243</sup>Pu и <sup>245</sup>Cm образуют более монотоную зависимость, не совпадающую по тенденции с оцененными в двухцентровой оболочечной модели зависимостями. С большой вероятностью это связано с ошибочной интерпретацией состо-



Рис. 2: Квазинейтронные спектры для исследуемых изотонов <sup>243</sup>Pu, <sup>245</sup>Cm , <sup>247</sup>Cf, <sup>249</sup>Fm , <sup>251</sup>No и <sup>253</sup>Rf с учетом блокировки и без

яний I = 3/2, 7/2, 11/2 как принадлежащих к полосе K = 1/2 уровней. Рассматриваемые ядра являются достаточно «мякими» по отношению к октупольным колебаниям, и наличие более высоко лежащей полосы K = 3/2 с противоположной четностью при 790,7 кэВ [10] может свидетельствовать о том, что две данные полосы с K = 3/2 являются членами дублета по четности, генерируемого октупольными колебаниями ядерной материи. Таким образом, состояния I = 3/2, 7/2, 11/2 могут быть интерпретированы как состояния с K = 3/2.

# 3.3. Вероятности E2 переходов и времена жизни состояний $1/2^+$

На основании полученных спектров можно оценить вероятности электрического квадрупольного E2 перехода, связывающего возбужденные состояния  $1/2^+$  с основным, а также времена жизни соответствующих возбужденных состояний по отношению к данному переходу [11] (в секундах):

$$T = (1, 223 \cdot 10^9 E^5 \cdot B(E2))^{-1}.$$
 (12)

Оцененные вероятности переходов и времена жизни состояний для цепочки приведены в табл. II, III.

Оцененные значения времен жизни состояния  $1/2^+$  в изотонах цепочки с N = 149, полученные с помощью спектров и волновых функций в рамках ДЦОМ, свидетельствуют о возможности быстрого  $(10^{-9}c) E2$  перехода из этого состояния в нижележащее возбужденное состояние. Учет кориолисова взаимодействия не приводит к заметному смещению уровней и, как следствие, изменению  $\Delta E$ , и смешивание волновых функций в значительной степени не повлияет на вероятность данного перехода и, соответственно, время

жизни состояния. Однако учет эффекта блокировки приводит изменению порядка уровней таким образом, что переход из  $1/2^+$  в  $5/2^+$  становится невозможен (рис. 2), и состояния  $1/2^+$  становятся во всех ядрах цепочки формально изомерными. Учет кориолисова взаимодействия в данном случае приводит к появлению в волновой функции основного состояния  $7/2^+$  примесей волновых функций с K = 5/2 (порядка 3%), которые делают возможным переход из  $1/2^+$  в основное состояние.

Таблица II: Модул<br/>иB(E2)для переходов  $1/2^+ \to 5/2^+, \ e^2 \Phi_{\rm M}{}^4$ 

| Изотоп            | ДЦОМ   | Кориолис | Кориолис+блокировка |
|-------------------|--------|----------|---------------------|
| <sup>243</sup> Pu | 10,940 | 11,574   | 0,369               |
| <sup>245</sup> Cm | 11,005 | 11,647   | 0,346               |
| <sup>247</sup> Cf | 11,086 | 10,535   | 0,303               |
| <sup>249</sup> Fm | 11,165 | 10,188   | 0,327               |
| $^{251}$ No       | 11,096 | 11,710   | 0,353               |
| <sup>253</sup> Rf | 11,088 | 10,451   | 0,345               |

В сравнении с экспериментальными значениями времен жизни для изотопов <sup>243</sup>Pu и <sup>245</sup>Cm (0,33 мкс и 0,29 мкс соответственно [2]) полученные в двухцентровой оболочечной модели с учетом блокировки и взаимодействия Кориолиса значения совпадают по порядку величины, но намечают тенденцию к постепенному росту времени жизни состояния  $1/2^+$  по мере продвижения к <sup>253</sup>Rf в отличие от наблюдаемого в эксперименте уменьшения. За счет достаточно близких по величине входных данных ( $\lambda$ ,  $\beta$ ,  $\Im$ ) для используемой модели у различных изотонов в расчетах не наблюдается выделенного изомерного состояния, и времена



Рис. 3: Зависимость энергии состояния с K = 1/2 от величины полного момента I для изотонов <sup>243</sup> Pu, <sup>245</sup> Cm , <sup>247</sup> Cf, <sup>249</sup> Fm , <sup>251</sup> No и <sup>253</sup> Rf

Таблица III: Времена жизн<br/>и $1/2^+$ состояний для перехода $1/2^+ \to 5/2^+,\,{\rm c}$ 

| Изотоп            | ДЦОМ                   | Кориолис               | Кориолис+блокировка   |
|-------------------|------------------------|------------------------|-----------------------|
| <sup>243</sup> Pu | $7,818 \cdot 10^{-10}$ | $6,985 \cdot 10^{-10}$ | $1,227 \cdot 10^{-5}$ |
| <sup>245</sup> Cm | $1,194 \cdot 10^{-9}$  | $1,066 \cdot 10^{-9}$  | $1,152 \cdot 10^{-5}$ |
| <sup>247</sup> Cf | $2,375 \cdot 10^{-9}$  | $2,630 \cdot 10^{-9}$  | $1,495 \cdot 10^{-5}$ |
| <sup>249</sup> Fm | $3,888 \cdot 10^{-9}$  | $4,669 \cdot 10^{-9}$  | $1,288 \cdot 10^{-5}$ |
| $^{251}$ No       | $2,306 \cdot 10^{-9}$  | $2,071 \cdot 10^{-9}$  | $1,643 \cdot 10^{-5}$ |
| <sup>253</sup> Rf | $1,293 \cdot 10^{-9}$  | $1,455 \cdot 10^{-9}$  | $2,664 \cdot 10^{-5}$ |

жизни достаточно плавно возрастают по мере роста Z, достигая максимального значения для  $^{253}$ Rf (0,26 мкс).

# ЗАКЛЮЧЕНИЕ

В настоящей работе были получены квазинейтронные спектры изотонов  $^{243}$ Pu,  $^{245}$ Cm ,  $^{247}$ Cf,  $^{249}$ Fm,  $^{251}$ No и  $^{253}$ Rf, а также оценены времена жизни состояния  $1/2^+$  по отношению к E2 переходу в основное состояние. Оцененные с учетом взаимодействия Кориолиса и эффекта блокировки времена жизни имеют достаточно близкие значения для различных изотонов (порядка мкс). Эксперимент, напротив, указывает на появление выделенного изомерного состояния только в  $^{251}$ No. Дальнейший учет связи одночастичных степеней свободы нечетной частицы с квадрупольными колебаниями поверхности ядра может также повлиять на соотношения теоретических времен жизни исследуемых изотопов.

- Antonenko N. V., Kartavenko V. G., Jolos R. V. et al. Chinese Physics C. 2017. 41(7). P. 074105.
- [2] Herzberg R.-D., Greenlees P. T. Progr. Part. Nucl. Phys. 2008. 61. P. 674.
- [3] Kondev F. G., Dracoulis G. D., Kibedi T. Atomic Data and Nuclear Data Tables. 2015. 50. P. 103.
- [4] Ring P., Schuck P. The Nuclear Many-Body Problem. 1.

New-York, 1991.

- [5] Maruhn J., Greiner W. Z. Physik. 1972. 251. P. 431.
- [6] Kuzmina A. N., Adamian G. G., Antonenko N. V. Phys. Rev. C. 2012. 85. P. 027308.
- [7] Bezbakh A. N., Shneidman T. M., Adamian G. G. et al. Eur. Phys. J. A. 2014. 50. P.97.
- [8] Bezbakh A. N., Kartavenko V. G., Adamian G. G. et al.

Phys. Rev. C. 2015. 92. P.014329.

- [9] Bezbakh A. N., Shneidman T. M., Adamian G. G. Eur. Phys. J. A. 2016. **52**. P.353.
- National Nuclear Data Center, http://www.nndc.bnl.gov/. [11] *Eisenberg J. M., Greiner W.* Nuclear Theory. **3**. 2016. **52**. P. 353. Amsterdam. 1972.
- [10] Evaluated Nuclear Structure Data File. Brookhaven,

# Description of spectra of heavy and super-heavy nuclei in two center shell model

M. L. Markova<sup>1a</sup>, N. V. Antonenko<sup>2b</sup>, T. Yu. Tretyakova<sup>3c</sup>, T. M. Shneydman<sup>2,4d</sup>

<sup>1</sup>Department of General Nuclear Physics, Physics, Faculty of Physics, Lomonosov Moscow State University

Moscow 119991, Russia

<sup>2</sup>Joint Institute of Nuclear Research, Dubna 141980, Russia.

<sup>3</sup>Skobeltsyn Institute of Nuclear Physics MSU, Moscow 119992, Russia

<sup>4</sup>Kazan Federal University, Kazan 420021, Russia

E-mail: <sup>a</sup>ml.markova@physics.msu.ru, <sup>b</sup>antonenk@theor.jinr.ru, <sup>c</sup>tretyakova@sinp.msu.ru, <sup>d</sup>shneyd@theor.jinr.ru

The present paper is devoted to the description of quasi-neutron structure of odd isotones in chain with N = 149: <sup>243</sup>Pu, <sup>245</sup>Cm, <sup>247</sup>Cf, <sup>249</sup>Fm, <sup>251</sup>No, and <sup>253</sup>Rf. The minimization of potential surface with respect to collective parameters was carried out in order to define ground states and describe low lying quasi-neutron states in the frame of two center shell model. The blocking effect was taken into account as well, transition probabilities and corresponding lifetimes for low lying quasi-neutron states were estimated.

PACS: 21.60.Cs, 21.10.Pc, 13.40.-f, 21.10.Tg.

*Keywords*: Heavy nuclei, super-heavy nuclei, quasi-neutron structure, isomeric state, transition probability, lifetime of a state. *Received 02 February 2018*.

# Сведения об авторах

- 1. Маркова Мария Леонидовна студентка 1 курса магистратуры; e-mail: ml.markova@physics.msu.ru.
- 2. Антоненко Николай Викторович доктор физ.-мат. наук, профессор, зам. директора лаборатории по научной работе; тел.: (496) 216-3352, e-mail: antonenk@theor.jinr.ru.
- 3. Третьякова Татьяна Юрьевна канд. физ.-мат. наук, ст. науч. сотрудник; тел.: (495) 939-5636, e-mail: tretyakova@sinp.msu.ru.
- 4. Шнейдман Тимур Маркович канд. физ.-мат. наук, ст. науч. сотрудник; тел.: (496) 216-3912, e-mail: shneyd@theor.jinr.ru.