Оценка точности численного описания дифракционных эффектов в сильно фокусированных ультразвуковых пучках с использованием различных параболических моделей и способов постановки граничного условия

И.С. Мездрохин¹,* П.В. Юлдашев²,[†] В.А. Хохлова^{1‡}

¹Московский государственный университет имени М.В.Ломоносова, физический факультет, кафедра акустики

²Московский государственный университет имени М.В.Ломоносова,

физический факультет, кафедра общей физики и физики конденсированного состояния

Россия, 119991, Москва, Ленинские горы, д. 1, стр.2

(Статья поступила 06.07.2017; Подписана в печать 13.09.2017)

В работе описан алгоритм численного моделирования ультразвукового пучка, создаваемого аксиально-симметричным излучателем, с использованием широкоугольного приближения теории дифракции. Проводится сравнение результатов моделирования для сильно фокусирующего излучателя, полученных на основе следующих моделей: решения дифракционной задачи с помощью интеграла Рэлея; параболического приближения теории дифракции; параболического приближения с модификацией граничного условия; широкоугольного приближения с использованием различных способов задания граничного условия.

РАСS: 43.20.Ві. УДК: 534.2 Ключевые слова: дифракция, параболическое приближение, интеграл Рэлея, медицинская акустика, аппроксимация Паде, ультразвуковая хирургия.

введение

В настоящее время различные методики ультразвукового воздействия на биологические ткани широко применяются во многих областях медицины [1]. Так, например, неинвазивное разрушение опухолей в различных органах, остановка внутренних кровотечений при травмах (ультразвуковой гемостаз) и ультразвуковая коррекция фигуры — далеко не полный список современных медицинских процедур, в которых используются сфокусированные ультразвуковые пучки. Методы численного моделирования при этом являются важной составляющей, необходимой для успешного развития новых медицинских технологий. В зависимости от параметров излучателя используются различные математические модели, описывающие те или иные волновые эффекты в рассматриваемых полях. Одной из распространенных и наиболее простых для моделирования моделей является параболическое приближение теории дифракции.

Однако его использование ограничено малыми углами фокусировки излучателя [2]. Для некоторых медицинских задач требуется достижение больших давлений в фокусе излучателя, поэтому такие излучатели делают сильно фокусирующими. В этом случае использование параболической модели приводит к ошибкам в определении параметров поля. Точность расчетов на основе параболической модели для сильно фокусированных пучков можно повысить с помощью моди-

Рис. 1: Геометрия ультразвукового излучателя с апертурой 2
а, и фокусным расстоянием ${\cal F}$

фикации граничных условий [3]. Увеличить диапазон углов фокусировки можно также обобщив параболическую модель с помощью Паде аппроксимации точного дифракционного оператора; такое представление дифракционного оператора называется широкоугольной моделью. В недавней работе был описан метод использования широкоугольной модели для решения задач медицинского ультразвука [4]. В данной работе исследованы различные варианты постановки граничного условия для широкоугольного уравнения и проведено сравнение точности и эффективности следующих методов расчета поля ультразвукового источника: решения дифракционной задачи с помощью интеграла Рэлея, параболического приближения дифракции, параболического приближения дифракции с модификацией граничных условий и широкоугольной модели с различными вариантами постановки граничных условий. В качестве примера рассматривается поле аксиальносимметричного сферического излучателя (рис. 1) с ра-

Россия, 119991, Москва, Ленинские горы, д. 1, стр.2

^{*}E-mail: mezdrokhin@mail.ru

[†]E-mail: petr@acs366.phys.msu.ru

[‡]E-mail: vera@acs366.phys.msu.ru

диусом a = 5 см, фокусным расстоянием F = 9 см и частотой f = 1 МГц. Угол фокусировки такого излучателя составляет $\theta = 33.7^{\circ}$, а коэффициент линейного усиления давления в фокусе относительно давления на его поверхности равен 64.

1. ТЕОРЕТИЧЕСКОЕ ОПИСАНИЕ ПАРАБОЛИЧЕСКОГО ПРИБЛИЖЕНИЯ ДИФРАКЦИИ

Решение дифракционной задачи можно получить с помощью интеграла Рэлея. [5]:

$$p(r) = -i\rho_0 c_0 \frac{k}{2\pi} \int_S \frac{u(\overrightarrow{r'})e^{ik|\overrightarrow{r}-\overrightarrow{r'}|}}{|\overrightarrow{r}-\overrightarrow{r'}|} dS, \qquad (1)$$

где p — комплексная амплитуда акустического давления в точке наблюдения с радиус-вектором \overrightarrow{r} , u — амплитуда нормальной компоненты скорости излучающей поверхности, $\overrightarrow{r'}$ — радиус-вектор элемента поверхности dS, $k = \omega/c_0$ — волновое число, ρ_0 — плотность среды, c_0 — скорость звука. Интегрирование ведется вдоль поверхности S, представляющей собой сегмент сферы, ограниченный полярным углом θ (рис. 1).

Рассматриваемые далее методы основываются на численном решении приближенных уравнений, получаемых из уравнения Гельмгольца [6]:

$$\Delta p + k^2 p = 0, \tag{2}$$

где Δ — оператор Лапласа. Для медленно меняющейся амплитуды давления волны $p(z,r) = \phi(z,r)e^{ikz}$, распространяющейся преимущественно в направлении оси z, уравнение Гельмгольца может быть представлено в виде [7, 8]:

$$\frac{\partial \phi}{\partial z} = ik \left(\sqrt{1 + \hat{L}} - 1 \right) \phi, \tag{3}$$

где дифференциальный оператор \hat{L} для аксиальносимметричного пучка имеет вид:

$$\hat{L} = \frac{1}{k^2} \left(\frac{\partial^2 \phi}{\partial r^2} + \frac{1}{r} \frac{\partial \phi}{\partial r} \right), \tag{4}$$

где r — радиальная координата. Оператор $\hat{Q} = \sqrt{1 + \hat{L}}$ является псевдодифференциальным оператором и представим в виде разложения в ряд Тейлора по оператору \hat{L} :

$$\hat{Q} = 1 + \sum_{n=1}^{\infty} a_n \hat{L}^n.$$
 (5)

При удержании только первого и нулевого членов разложения (5), $\hat{Q} \approx 1 + \hat{L}/2$, из уравнения (3) можно получить стандартное параболическое уравнение [7]:

$$\frac{\partial \phi}{\partial z} = \frac{i}{2k} \left(\frac{\partial^2 \phi}{\partial r^2} + \frac{1}{r} \frac{\partial \phi}{\partial r} \right). \tag{6}$$

Для вывода широкоугольного параболического уравнения используется следующий прием [8]. Если оператор $\hat{Q} = \sqrt{1 + \hat{L}}$ не зависит от координаты *z*, то решение уравнения (3) на шаге $z + \Delta z$ выражается

$$\phi(z + \Delta z, r) = \exp\left[ik\Delta z\left(\sqrt{1 + \hat{L}} - 1\right)\right]\phi(z, r) \quad (7)$$

через решение на шаге z как:

где оператор $\hat{A} = \exp\left[ik\Delta z\left(\sqrt{1+\hat{L}}-1\right)\right]$ называется пропагатором. Также как и оператор \hat{Q} , пропагатор \hat{A} может быть аппроксимирован несколькими первыми членами ряда Тейлора по оператору \hat{L} . Однако слагаемые ряда Тейлора \hat{L}^n высокого порядка неудобны при решении уравнения с помощью численных методов. Поэтому пропагатор представляют в виде отношения двух полиномов степени N, т.е. в виде аппроксимации Паде [6]:

$$\hat{A} = \frac{a_0 + a_1 \hat{L} + \dots + a_N \hat{L}^N}{b_0 + b_1 \hat{L} + \dots + b_N \hat{L}^N}.$$
(8)

Коэффициенты аппроксимации Паде могут быть найдены, если известны коэффициенты слагаемых ряда Тейлора до номера 2N включительно. Для последующего решения пропагатор \hat{A} представляется в виде:

$$\hat{A} = a_0 \prod_{n=1}^{N} \left(1 + \mu_n \hat{L} \right) \middle/ b_0 \prod_{n=1}^{N} \left(1 + \nu_n \hat{L} \right), \quad (9)$$

где $\mu_n = -1/\alpha_n$, $\nu_n = -1/\beta_n$, а α_n и β_n — корни полиномов, стоящих в числителе и знаменателе аппроксимации Паде. Такое представление пропагатора допускает на каждом шаге процедуру решения вида:

$$\left(1+\nu_n\hat{L}\right)\phi^{n+1}(z+\Delta z,r) = \left(1+\mu_n\hat{L}\right)\phi^n(z,r), \quad (10)$$

для которой возможно построение простой конечноразностной численной схемы типа схемы Кранка-Николсона.

2. ПОСТАНОВКА ГРАНИЧНЫХ УСЛОВИЙ

Для параболической и широкоугольной моделей необходимо задание граничных условий на некоторой плоскости, расположенной перпендикулярно оси пучка. Для стандартного параболического уравнения граничное условие, как правило, задается в плоскости z = 0 (рис. 2) и описывается выражением:

$$p(r,0) = p_0 \exp\left(-ik_0 r^2/2F\right), \ r \le a$$

$$p(r,0) = 0, \ r > a$$
(11)

где *а* — радиус излучателя, *F* — его фокусное расстояние (рис. 1). Для повышения точности расчета поля в фокальной области излучателя используется модель эквивалентного излучателя, в которой амплитуда

УЗФФ 2017

1751108 - 2

Рис. 2: Способы постановки граничных условий в различных моделях описания ультразвукового пучка, создаваемого фокусирующим излучателем в виде сферического сегмента с частотой 1 МГц, радиусом 5 см и фокусным расстоянием 9 см. Для параболического уравнения: a — равномерное распределение амплитуды давления на плоскости «А», проходящей через центр излучателя, и на плоскости «М» для эквивалентного источника. Для широкоугольного параболического уравнения: b — перенос поля с поверхности излучателя на плоскость «С» либо на плоскость «Ф» с использованием интеграла Рэлея, затем на плоскость «А» с использованием либо метода углового спектра, либо его широкоугольного приближения

давления на излучателе p_m , его радиус a_m и фокусное расстояние F_m подбираются таким образом, чтобы обеспечить одинаковое давление в фокусе и положение первых дифракционных нулей поля в сравнении с решением (1) [3]. Для постановки граничных условий широкоугольной параболической модели предлагается следующий алгоритм действий: сначала, с помощью интеграла Рэлея рассчитывается поле в некото-

- Хилл К., Бэмбер Дж., тер Хаар Г. (ред.). «Ультразвук в медицине. Физические основы применения». М.: Физматлит, 2008.
- [2] *Tjotta J., Tjotta S., Vefring E.* J. Acoust. Soc. Am. 1991.
 89, №3, P. 1017.
- [3] Росницкий П.Б. Акуст. журн. 62, № 2, С. 153.
- [4] Мездрохин И. С., Юлдашев П. В., Хохлова В. А. Ученые записки физического ф-та Московского ун-та. 2016. № 6. С. 166702.

рой плоскости, лежащей между источником и фокусом, или в фокальной плоскости. Далее поле переносится на плоскость в основании излучателя, используя либо метод углового спектра, либо его широкоугольный аналог (рис. 2).

3. РЕЗУЛЬТАТЫ МОДЕЛИРОВАНИЯ

Результаты сравнения точности различных приближенных методов представлены на рис. 3. Видно, что параболические методы, как стандартный, так и с модификацией граничных условий (a, b) заметно уступают в точности широкоугольному подходу (s, e). Для широкоугольной модели точнее оказывается решение с обратным переносом граничного условия из фокальной плоскости, независимо от метода переноса.

ЗАКЛЮЧЕНИЕ

В работе показано, что широкоугольное параболическое приближение теории дифракции позволяет рассчитывать сильно сфокусированные поля с точностью, превышающей точность стандартной и модифицированной параболических моделей. При этом время вычислений остаётся того же порядка, что и для параболических моделей, что делает широкоугольное приближение полезным для моделирования дифракционных эффектов в задачах медицинской акустики.

Работа поддержана грантом РНФ № 14-12-00974.

- [5] Rayleigh J. W. S. «The theory of sound». Dover, New York, 1945. II. P. 47.
- [6] Виноградова М.Б., Руденко О.В., Сухоруков А.П. Теория волн. 1979. С. 384.
- [7] Collins M. D. J. Acoust. Soc. Am. 1993. 93, N 6. P.1736.
- [8] Yevick D., Thomson D.J. J. Acoust. Soc. Am. 2000. 108, N 6. P. 2784.

Estimation of the accuracy of the numerical description of diffraction effects in highly focused ultrasonic beams using various parabolic models and methods for setting the boundary condition

I.S. Mezdrokhin^{1,a}, P.V. Yuldashev^{2,b}, V.A. Khokhlova^{1,c}

¹Department of Acoustics, Faculty of Physics, Lomonosov Moscow State University ²Department of General and Condensed Matter Physics, Faculty of Physics,Lomonosov Moscow State University Moscow 119991, Russia E-mail: ^amezdrokhin@mail.ru, ^bpetr@acs366.phys.msu.ru, ^cvera@acs366.phys.msu.ru

1751108-3

Рис. 3: Двумерное распределение разности амплитуд давлений в точном и приближенных решениях, отнесенной к амплитуде давления в фокусе в точном решении. Параболическое уравнение: *a* — со стандартным граничным условием, *б* — с модифицированным граничным условием; широкоугольное параболическое уравнение: *в* — с обратным переносом с помощью метода углового спектра, *г* — с обратным переносом с помощью широкоугольного параболического приближения

A numerical algorithm based on the wide-angle parabolic approximation for modeling diffraction effects in strongly focused ultrasound beams is presented. The accuracy of the proposed approach is evaluated and compared with other diffraction approaches: the Rayleigh integral solution; parabolic approximation solution with and without modification of the boundary condition; wide-angle parabolic approximation with different ways of setting a boundary condition.

PACS: 43.20.Bi.

Keywords: diffraction, parabolic approximation, Rayleigh integral, medical acoustics, Pade approximation, ultrasonic surgery. *Received 06 July 2017*.

Сведения об авторах

- 1. Мездрохин Илья Сергеевич студент, e-mail: mezdrokhin@mail.ru.
- 2. Юлдашев Петр Викторович канд. физ.-мат. наук, ст. преподаватель; тел.: (495) 939-29-52, e-mail: petr@acs366.phys.msu.ru.
- 3. Хохлова Вера Александровна доктор физ.-мат. наук, доцент; тел.: (495) 939-29-52, e-mail: vera@acs366.phys.msu.ru.