Адаптивная интегрированная сетецентрическая система высокочастотного подводного наблюдения вблизи портовых зон и морских сооружений импульсных сигналов в океане

И.П. Смирнов¹, А.А. Хилько²,* В.В. Коваленко³, А.Г. Лучинин¹, Е.А. Мареев¹, А.И. Малеханов¹, А.И. Хилько¹, В.Н. Кравченко⁴

¹Институт прикладной физики РАН. Россия, 603950, Нижний Новгород, ул. Ульянова, д. 46

²Национальный исследовательский Нижегородский государственный университет имени Н.И. Лобачевского Россия, 603950, Н. Новгород, пр-т Гагарина, д. 23

³Научный совет по комплексной проблеме «Гидрофизика» РАН Россия, 119333, Москва, ул. Дмитрия Ульянова, д. 5

⁴ОАО «ЦНИИ «Атолл». Россия, 141981, Московская область, Дубна, ул. Приборостроителей, д. 5 (Статья поступила 05.07.2017; Подписана в печать 11.09.2017)

Для акустического высокочастотного зонального наблюдения вблизи морских сооружений разработан сетецентрический метод, основанный на совместной обработке набора мультистатических томографических проекций, формируемых в подводном канале вертикальными излучающими и приемными решетками сложно-модулированных импульсных сигналов в виде согласованных с волноводом пучков. Исследована эффективность конкретных систем наблюдения в реальных прибрежных морских акваториях. Работоспособность метода исследовалась в натурных экспериментах.

PACS: 43.30.+m УДК: 534.23

Ключевые слова: зональное подводное наблюдение, сетецентрический метод, согласованные с волноводом пучки.

ВВЕДЕНИЕ

Постоянное эффективное зональное подводное наблюдение малоразмерных объектов в мелководных морских районах вблизи портов и важных морских сооружений может быть осуществлено сетецентрической системой, состоящей из совокупности пространственно распределенных, работающих совместно высокочастотных (ВЧ) пассивно-активных гидроакустических (ГА) элементов [1]. На рис. 1 схематически показан состав таких ВЧ сетецентрических систем подводного наблюдения (ВЧ ССПН), где: 1 — малоразмерный объект наблюдения, 2 — парциальные зоны наблюдения отдельного приемно-излучающего элемента, 3 — средство реагирования, 4 — порт, 5 — береговой центр управления и принятия решений, 6 — линия связи.

В состав системы включаются и алгоритмы принятия совместных решений и управления работой, которые должны оптимизироваться с учетом особенностей решаемых задач и условий наблюдения. При этом ВЧ ССПН должны обладать адаптивными свойствами, что позволяет минимизировать энергоресурсы, необходимые для работы отдельных элементов и системы наблюдения в целом. В соответствии с этим ВЧ ССПН должны являться совокупностью элементовтехнологий, включающих в себя акустические и неакустические приемные подсистемы, источники зондирующих сигналов, элементы разнородной связи, подсистемы геофизических датчиков, а также центральные элементы сетей, обеспечивающих решение задач адаптивного наблюдения и управления потенциалом. Ра-

циональная структура ВЧ ССПН должна определяться гидролого-геофизическими условиями района, требуемой эффективностью наблюдения и требованиями по минимизации необходимых энергоинформационных ресурсов [1]. В этом случае функционирование системы представляет собой процедуру, включающую оптимизацию активации элементов и их адаптацию к изменениям среды.

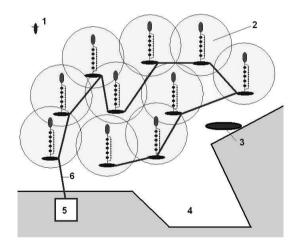


Рис. 1: Структура мультистатической системы подводного наблюдения малоразмерных объектов вблизи порта

1. МЕТОДЫ АДАПТИВНОГО ЗОНАЛЬНОГО ВЧ НАБЛЮДЕНИЯ

Обоснование структуры и управление наблюдением ВЧ ССПН в конкретном морском районе выполняется

^{*}E-mail: A.khil@hydro.appl.sci-nnov.ru

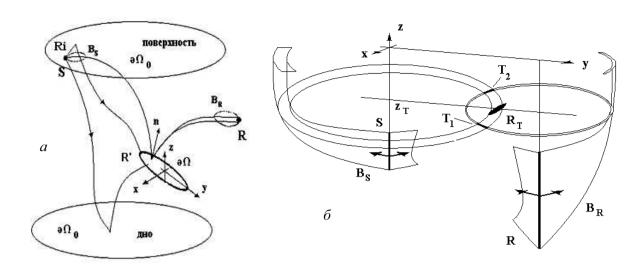


Рис. 2: Принцип пучковой импульсной томографии

с помощью физико-математической и численной модели ВЧ ССПН, включающей в себя модели элементов ИСС, наблюдаемых неоднородностей, океанологических условий конкретных районов, помех, адаптированных к океанической среде зондирующих акустических сигналов, дифракции зондирующих сигналов локализованными и случайно распределенными неоднородностями, а также моделей передачи, сбора и обработки данных от распределенных систем и управления процессом поиска и принятия решений [2-4]. На основе использования указанной модели обеспечивается прогноз эффективности вариантов ВЧ СС-ПН для различных целей, районов и условий наблюдения, с учетом критериев эффективность-стоимость. Основным способом достижения требуемой зональной эффективности при выполнении условий скрытности для парциальных элементов-технологий является использование при их работе адаптированных к среде высококогерентных зондирующих сигналов и методов фильтрации и накопления полезных сигналов при приеме, что обуславливается и энергетическими ограничениями [2-4]. В общем случае сбор, объединенная обработка данных, отображение информации, управление подсистемами и принятие решений осуществляются мастер-элементами ВЧ ССПН, в качестве которых, при подходящих условиях могут рассматриваться и береговые пункты. Адаптированное к тактическим задачам и условиям управление процессом наблюдения обеспечивается оптимальным выбором решающих правил и критериев, а также может основываться на использовании морских роботизированных устройств в виде буксируемых, либо автономных, преимущественно подводных аппаратов различных типов, способных нести сенсорное, связное (ретрансляционное) и навигационное оборудование. Различные варианты ВЧ ССПН должны быть оборудованы средствами позиционирования и синхронизации работы составля-

ющих ее элементов, а также подсистемы гидрофизических датчиков, обеспечивающих актуализацию океанологических данных. с физической точки зрения,

ВЧ ССПН строится на основе пучковой импульсной томографии (ПИТ), включающей набор мультистатических ВЧ ГА проекций и лоцирования неоднородностей среды с помощью согласованных с океаническим волноводом направленных сложно-модулированных импульсных сигналов. На рис. 2 показано расположение излучающей S_i и приемной решетки R_i одной из пространственных томографических проекций (слева) и формирование горизонтального сечения бистатического изображения, расположенного в точке \mathcal{R}_T эллипсоида вертикально ориентированными излучающей S и приемной R решетками при использовании томографической проекции, формируемой водными пучками WW (справа). Широким кольцом обозначены фокусированный в плоскость $z=z_T$ зондирующий акустический пучок B_S и направленная в ту же точку диаграмма направленности приемной решетки B_R . Зоны наблюдения T_1 и T_2 образуются при пересечении проекций пучка подсветки и основного лепестка диаграммы направленности приемной решетки в плоскости $z = z_T$. В соответствие с методом ПИТ, осуществляется возбуждение и прием хорошо распространяющихся и направленных в точку наблюдения водного и отраженного от поверхности звуковых пучков. При этом используется корректная гидрофизическая модель для конкретной акватории, учитывающей гидрологию канала и строение осадочных донных пород, подводные течения, скорость и направление ветра. Для решения задачи возбуждения и направленного приема ВЧ импульсов в океанических волноводах с помощью вертикально ориентированных решеток формируются оптимальные (согласованные с волноводом) апертурные распределения, позволяющие достигать существенного увеличения пространственного разрешения

Рис. 3: Оценка эффективности ВЧ ССПН в мелком море (a — траектория перемещения; δ — вероятность обнаружения объекта)

и чувствительности системы наблюдения [4]. Задача дифракции когерентных и направленных в пространстве импульсных сигналов на рассеивающем объекте в океаническом волноводе рассмотрена для случаев абсолютно жестких и импедансных тел больших волновых размеров. Формирование реверберационных помех описывается моделью рассеяния импульсов в виде пространственно-направленного пучка на ветровом волнении, а также донных неоднородностях. Влияние аддитивных океанических шумов в акватории учитывалось на основе модели их генерации ветровым волнением. Алгоритм наблюдения заключается в оценке параметров (координат) наблюдаемой неоднородности с заданной достоверностью, для чего использованы методы проверки гипотез с решающими статистиками, основанными на использовании согласованных фильтров. При получении результирующего томографического изображения объекта использовались алгоритмы логического накопления парциальных вероятностей по отдельным томографическим проекциям.

2. АНАЛИЗ ВАРИАНТОВ ВЧ ССПН

Вариант ВЧ ССПН для реалистичных условий мелководной акватории Черного моря, в частности, для морского района вблизи порта г. Феодосия был исследован с помощью численной модели (рис. 3). Траектория перемещения объекта в виде эллипсоида размерами $1.5\,\mathrm{m}$ и диаметром $0.5\,\mathrm{m}$, по $20\,$ опорным точкам в акватории порта показана на рис. 3, слева. Многоэлементные вертикальные антенные решетки ($15\,$ излучателей, $35\,$ приемников) располагались в точках $S_{b,R}$ и R_b . При моделировании рассматривались режимы излучения ЛЧМ импульсов в полосе $4-8\,\mathrm{kFu}$. Эффективность наблюдения (вероятность обнаружения, при вероятности ложной тревоги 10^{-3}) объекта по отдель-

ным волноводным томографическим проекциям: пучки, отраженные от поверхности (SS), водные пучки (WW) и перекрестные пучки(SW, WS), и в результате их накопления (рис. 3, справа, внизу). Апробирование работоспособности вариант ВЧ ССПН выполнялось в ходе морских экспериментов [5], проведенных в Иваньковском водохранилище (рис. 4) с использованием модельного объекта. Схема расположения излучающих решеток с центральными частотами 9 кГц (ИР1Г, ИР1В) и 4.5 кГц (ИР2Г, ИР2В) и приемных решеток (ПРГ и ПРВ) показана на рис. 4, слева. Реконструкция траектории движения объекта в результате использования процедуры траекторного накопления показана на рис. 4, справа. Результаты численного и натурного экспериментов позволили получить прогнозные оценки эффективности системы ПИТ для конкретных натурных условий. Вероятности наблюдения для произвольных траекторий движения тела рассматривались в зависимости от вариаций гидрологических характеристик, скорости и направления ветра, интенсивности окружающего судоходства, скорости подводных течений, параметров излучающих и приемных решеток, характеристик излучаемых импульсов и других параметров задачи. В целях экспериментальной реализации метода ПИТ разработаны многоэлементные излучающие и приемные решетки, а также алгоритмы управления излучающими (в диапазонах 6-12 кГц и 3-6 кГц) и приемными комплексами с набором многоэлементных приемных решеток.

ЗАКЛЮЧЕНИЕ

В работе показано, что ВЧ ССПН система непрерывного зональная наблюдения может быть основана на формировании совместных решений набором мультистатических томографических проекций, формируе-

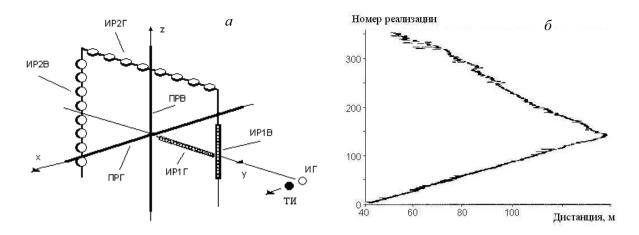


Рис. 4: Схема расположения излучающих и приемных решеток (а) и реконструкция траектории движения объекта (б)

мых в подводном канале вертикальными излучающими и приемными решетками сложно-модулированных импульсных сигналов в виде согласованных с волноводом пучков. Показано также, что облик конкретной

ВЧ ССПН может быть разработан с помощью физикоматематической модели метода, реализованной в виде программно-алгоритмического комплекса.

- [1] *Хилько А.И., Коваленко В.В., Малеханов А.И.* и др. Труды XI Всероссийской конференции «Прикладные технологии гидроакустики и гидрофизики». 2012. С. 5.
- [2] *Смирнов И. П., Хилько А. И., Хилько А. А.* Изв. Вуз. Радиофизика. 2009. **52**, № 2. С. 134; № 3, С. 192.
- [3] Коваленко В.В., Хилько А.И., Романова В.И. Труды Всероссийской конференции «Нелинейная динамика
- в когнитивных системах». Н. Новгород: ИПФ РАН. 2011. C. 93
- [4] *Хилько А.И., Смирнов И.П., Бурдуковская В.Г.* Акуст. журн. 2016. **62**, № 6. С. 712.
- [5] Гринюк А.В., Кравченко В.Н., Коваленко В.В. и др. Акуст. журн. 2011. **57**, № 5. С. 642.

Adaptive integrated network system of high-frequency underwater vision in near to port zones and sea constructions

I. P.Smirnov 1 , A. A.Hilko 2,a , V. V. Kovalenko 3 , A. G. Luchinin 1 , E. A. Mareev 1 , A. I. Malehanov 1 , A. I. Hilko 1 , V. N. Kravchenko 4

¹Institutes of applied physics of the Russian Academy of Sciences. Russia, 603950, Nizhny Novgorod

²Nizhniy Novgorod State University. Russia, 603950 Nizhny Novgorod

³Scientific council on a complex problem «Hydrophysics» RAS, Russia, 119333 Moscow

⁴«CNII Atoll». Russia, 141981 Dubna

E-mail: A.khil@hydro.appl.sci-nnov.ru

For acoustic high-frequency zone vision near to sea constructions it is developed network method based on joint processing of a set of multistatic tomography projections, formed in the underwater channel by vertical radiating and received elements of the modulated pulse signals in the form of the bunches adapted with a waveguide. Efficiency of concrete systems of vision system in real conditions is investigated. Working capacity of a method was investigated in natural experiments.

PACS: 43.30. + m

Keywords: zone underwater vision, network method, the adapted with a waveguide bundles. Received 05 July 2017.

Сведения об авторах

1. Смирнов Иван Паисьевич — канд. физ.-мат. наук, ст. науч. сотрудник, доцент; тел.: (831) 416-06-29, e-mail: smip@ipfran.ru

- 2. Хилько Антон Александрович канд. физ.-мат. наук, зав. лабораторией; тел.: (831) 465-63-05 e-mail: anton.khilko@gmail.com.
- 3. Коваленко Валерий Вениаминович канд. техн. наук, науч. сотрудник; тел.: (831) 436-84-90, e-mail: A.khil@hydro.appl.sci-nnov.ru.
- 4. Лучинин Александр Григорьевич доктор физ.-мат. наук, гл. науч. сотрудник; тел.: (831) 436-25-29, e-mail: luch@hydro.appl.sci-nnov.ru.
- 5. Мареев Евгений Анатольевич доктор физ.-мат. наук, зам. директора по научной работе; тел.: (831) 436-76-90, e-mail: e.mareev@appl.sci-nnov.ru.
- 6. Малеханов Александр Игоревич канд. физ.-мат. наук, зав. отделом; тел.: (831) 436-84-90, e-mail: almal@appl.sci-nnov.ru.
- 7. Хилько Александр Иванович доктор физ.-мат. наук, зав. лабораторией; тел.: (831) 436-84-90, e-mail: A.khil@hydro.appl.sci-nnov.ru.
- 8. Кравченко Владимир Николаевич зав. сектором; тел.: (831) 436-84-90, e-mail: vladimirkra@gmail.com.