УЧЕНЫЕ ЗАПИСКИ ФИЗИЧЕСКОГО ФАКУЛЬТЕТА 4, 154320 (2015)

Оценка предельного вакуумного тока в пролетном канале микроволнового устройства терагерцового диапазона

А.И. Ерохин* В.М. Пикунов[†]

Московский государственный университет имени М.В. Ломоносова, физический факультет, кафедра математики Россия, 119991, Москва, Ленинские горы, д.1, стр. 2

Рассматривается математическая модель для исследования предельного вакуумного тока в пролетном канале микроволнового устройства терагерцового диапазона. Для расчетов используется метод конечных элементов, позволяющий учитывать произвольную геометрию поперечного сечения канала и форму поперечного сечения электронного потока.

РАСS: 41.90.+е УДК: 537.872.2 Ключевые слова: предельный ток, пролетный канал, терагерцовый диапазон.

Рассматривается пролетный канал микроволнового устройства, нагруженный круглым электронным пучком, фокусируемым бесконечно большим магнитным полем. Движение аксиально-симметричного электронного пучка считается одномерным. Такая система является хорошей моделью для оценки ряда параметров различных электронных микроволновых устройств, широко используемых в современной технике, например, клистронов с распределенным взаимодействием [1]. Представляет интерес оценка предельных вакуумных токов и поперечное распределение скалярного потенциала в случае терагерцового диапазона, когда радиус пролетного канала R меньше рабочей длины волны $R < \lambda_0/4$.

В качестве математической модели используется двумерная краевая задача в поперечном сечении пролетного канала для нелинейного уравнения Пуассона с граничными условиями Дирихле:

$$\Delta U = -\frac{I_{inj}}{\varepsilon_0 S_b c \sqrt{1 - 1/\left(1 + |e_0| U/m_0 c^2\right)^2}},$$
 (1)

$$U|_{\Gamma} = U_d. \tag{2}$$

Здесь U — распределение потенциала в сечении канала, ток инжекции $I_{inj} = \text{const}$, ε_0 — диэлектрическая постоянная, e_0 и m_0 — заряд и масса электрона соответственно, S_b — площадь поперечного сечения электронного пучка, c — скорость света, U_d — потенциал на границе канала. В данной работе рассматривается сплошной круглый пучок радиуса r_b с различными значениями коэффициента заполнения канала k. Распределение тока инжекции I_{inj} по сечению канала равномерное и для случая k = 0.5 показано на рис. 1.

Задача (1), (2) описывает стационарное распределение потенциала в случае, когда ток инжекции меньше предельного вакуумного тока. Если ток инжекции больше предельного вакуумного тока, то необходимо

Рис. 1: Нормированное на единицу распределение тока инжекции по сечению пролетного канала.

рассматривать нестационарную постановку задачи, так как в этом случае стационарное решение не существует [2], и итерационный процесс, применяемый для его нахождения, расходится. Этот факт используется в алгоритме нахождения предельного вакуумного тока. В начале итераций задается небольшое значение тока инжекции, и для него итерационным процессом рассчитывается распределение потенциала U. В случае сходимости итерационного процесса ток инжекции увеличивается, и данный расчет проводится снова. Указанный процесс повторяется, пока не будет найдено значение тока, при котором итерационный процесс разойдется. Обычно при решении такой задачи в случае сходимости требуется не более 10 итераций.

На каждой итерации в качестве метода решения уравнения Пуассона с известной правой частью используется метод конечных элементов [3]. Отметим, что применение метода конечных элементов позволяет учитывать произвольную геометрию поперечного сечения канала и форму поперечного сечения электронного потока. Используя старое обозначение для потенциала, делается замена переменных, и уравнение (1) на *i*-й итерации переписывается в следующем виде:

$$-\Delta U^i = F^i, \tag{3}$$

$$F^{i} = -\frac{I_{inj}}{\varepsilon_{0}S_{b}c\sqrt{1 - 1/\left(1 + |e_{0}|\left(U_{d} - U^{i-1}\right)/m_{0}c^{2}\right)^{2}}}.$$
(4)

*E-mail: forlector@mail.ru

[†]E-mail: vmpikunov@mail.ru

В качестве нулевого приближения выбирается $U^0 = 0$. В методе конечных элементов используется слабая постановка краевой задачи. Для уравнения (3) с учетом однородного граничного условия она имеет вид: найти такие $U^i \in \dot{H}^1$, что $\forall v \in \dot{H}^1$ выполнено

$$\left(\nabla U^i, \nabla v\right) = \left(F^i, v\right),\tag{5}$$

где (u, v) — скалярное произведение, определяемое как интеграл по сечению канала от произведения функций u и v, \dot{H}^1 — пространство Соболева.

При численном решении задачи (5) функция U_i ищется из пространства функций с конечным носителем. В качестве последних в данной работе выбираются базисные функции первого порядка, т.е. пирамиды Куранта [4]. Сходимость численного решения к точному решению по норме \dot{H}^1 при данном выборе базиса есть O(h) [4].

Рис. 2: Пример разбиения сечения пролетного канала на треугольные конечные элементы.

Для вычислений используется свободно распространяемая программа freefem++ [5]. На границе области берется 300 точек, далее с помощью которых внутренняя область разбивается на треугольники (рис. 2). С помощью встроенного в программу для триангуляции области алгоритма Делане-Вороного [6] сечение канала разбивается на 15640 конечных элементов. При дальнейшем разбиении области точность расчетов практически не возрастает. Количество итераций при решении нелинейного уравнения Пуассона не превышает 6. Расчеты проводятся на компьютере с двухядерным процессором с частотой 3.06 ГГц и оперативной памятью 4 Гб. Расчетное время не превышает 28 с.

На основе математической модели проводится расчет предельного вакуумного тока для различных значений радиуса электронного пучка и потенциала на границе, исследуется распределение потенциала в сечении канала при различных значениях тока инжекции I_{inj} . Проводится сравнение полученного предельного тока с результатами, полученными по аналитической формуле из работы [2]:

$$I_{lim} = 17 \frac{\left(\gamma^{2/3} - 1\right)^{3/2}}{1 + 2\ln(R/r_b)},\tag{6}$$

где:

$$\gamma = \approx 1 + \frac{U_d \ [kV]}{511}.\tag{7}$$

Радиус пролетного канала R = 0.25 мм. На рис. 3 приводится зависимость, полученного численно и аналитически предельного вакуумного тока, от коэффициента заполнения канала электронным пучком k при $U_d = 16.5$ кВ. Для случая, когда k = 0.5 (при этом радиус электронного пучка $r_b = 0.125$ мм) и потенциал на границе $U_d = 16.5$ кВ, полученный с помощью МКЭ вакуумный предельный ток составляет $I_{lim} = 26.6$ А.

Рис. 3: Зависимость предельного вакуумного тока I_{lim} от коэффициента заполнения электронным пучком пролетного канала k.

Распределение потенциала U(r) при токе инжекции $I_{inj} = 0.3$ А в случае, когда потенциал на границе $U_d = 16.5$ кВ и коэффициент заполнения пролетного канала электронным пучком k = 0.5, показан на рис. 4. Результаты численного и аналитического расчета предельного вакуумного тока при различных значениях потенциала на границе при k = 0.5 приведены в табл. 1.

Из приведенных данных для предельных вакуумных токов следует, что основным ограничением на величину тока в пролетном канале является метод формирования электронного пучка. Для ввода электронного потока в пролетный канал малого поперечного сечения необходимо использовать электронные пушки с достаточно большим коэффициентом компрессии $C_j = (S_k/S_b)$, где: S_k — площадь катода.

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 14-01-31397 мол_а.

Таблица	I:	Предельный	вакуумный	ток	при	различных	зна-
чениях U	d						

$U_d \left[kB \right]$	I_{np} [A],	I_{np} [A],	
	аналитическая теория	расчет МКЭ	
2	0.94	1.1	
4	2.7	3.2	
6	4.9	5.8	
8	7.6	9.0	
10	10.6	12.6	
12	13.9	16.5	
14	17.5	20.8	
16	21.3	25.4	
18	25.4	30.3	
20	29.7	35.5	
22	34.3	39.9	
24	39.0	46.6	

Рис. 4: Зависимость нормированного потенциала $U(r)/U_d$ от радиуса r при $I_{inj} = 0.3$.

- Steeretal B. http://www.cpii.com/docs/related/40/EIK
 %20Technology%20at%20MMW%20&%20SubMMW
 %20Wavelengths.pdf
- [2] Богданкевич Л.С., Рухадзе А.А. УФН. **103**, №3. С.609. (1971).
- [3] Стренг В., Фикс Дж. Теория метода конечных элемен-

тов. М.: Мир. (1977).

- [4] Марчук Г. И., Агошков В. И. Введение в проекционносеточные методы. М.: Наука. (1981).
- [5] http://www.freefem.org/ff++
- [6] George P.L. Automatic triangulation. Wiley. (1996).

Vacuum Limiting Current Estimation in Drift Channel of Terahertz Region Microwave Device

A. I. Erokhin^a, V. M. Pikunov^b

Department of mathematics, Faculty of Physics, Lomonosov Moscow State University Moscow 119991, Russia E-mail: ^aforlector@mail.ru, ^bvmpikunov@mail.ru

Mathematical model for investigation of vacuum limiting current in a drift channel of terahertz region microwave device is considered. Finite element method which allows to consider arbitrary cross-section geometry of the channel and electron streamis used for calculations.

PACS: 41.90.+e

Keywords: limiting current, drift channel, terahertz region.

Received 27.07.2015.

Сведения об авторах

- 1. Ерохин Александр Игоревич канд. физ.-мат. наук, научный сотрудник; тел.: (495) 939-10-33, e-mail: forlector@mail.ru.
- 2. Пикунов Виктор Михайлович канд. физ.-мат. наук, старший преподаватель; тел.: (495) 939-10-33, e-mail: vmpikunov@mail.ru.